Annals of Combinatorics

, Volume 1, Issue 1, pp 367–375 | Cite as

Multiplication of a Schubert polynomial by a Schur polynomial

  • Axel Kohnert
Article

Abstract

Schur polynomials are a special case of Schubert polynomials. In this paper, we give an algorithm to compute the product of a Schubert polynomial with a Schur polynomial on the basis of Schubert polynomials. This is a special case of the general problem of the multiplication of two Schubert polynomials, where the corresponding algorithm is still missing. The main tools for the given algorithm is a factorization property of a special class of Schubert polynomials and the transition formula for Schubert polynomials.

AMS Subject Classification

05E05 14M15 

Keywords

Schubert polynomial Schur function transition formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bergeron and S. Billey, RC-graphs and Schubert polynomials, Experimental Mathematics2 (1993) 257–269.MathSciNetGoogle Scholar
  2. 2.
    S. Fomin and A.N. Kirillov, The Young-Baxter equation, symmetric functions and Schubert polynomials. Discrete Math.15 (1996) 123–143.CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Kohnert, Weintrauben, Polynome, Tableaux, Bayreuther Mathematische Schriften38 (1990) 1–97.MathSciNetGoogle Scholar
  4. 4.
    A. Kohnert, Schubert polynomials and skew Schur functions, J. Symbolic Computation14 (1992) 205–210.CrossRefMathSciNetGoogle Scholar
  5. 5.
    A. Lascoux and M.P. Schützenberger, Classes de Chern des variétés de drapeaux, C.R. Acad. Sc. Paris294 (1982) 393–398.Google Scholar
  6. 6.
    A. Lascoux and M.P. Schützenberger, Schubert polynomials and the Littlewood-Richardson rule, Letters in Mathematical Physics10 (1985) 111–124.CrossRefGoogle Scholar
  7. 7.
    D. Monk, Geometry of flag manifolds, Proc. London Math. Soc. (3)9 (1959) 253–286.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Axel Kohnert
    • 1
  1. 1.Lehrstuhl Mathematik IIUniversität BayreuthBayreuthGermany

Personalised recommendations