Calcified Tissue International

, Volume 37, Issue 5, pp 453–460 | Cite as

Human bone cellsin vitro

  • Pamela Gehron Robey
  • John D. Termine
Clinical Investigations


Human bone cell cultures were established by maintaining collagenase-treated, bone fragments in low Ca++ medium. The resulting cell cultures exhibited a high level of alkaline phosphatase activity and produced a significant increase in intracellular cAMP when exposed to the 1–34 fragment of human parathyroid hormone. With continued culture, the cells formed a thick, extracellular matrix that mineralized when cultures were provided daily with normal levels of calcium, fresh ascorbic acid (50 μg/ml) and 10 mM β-glycerol phosphate. Biosynthetically, these cells produced type I collagen (without any type III collagen), and the bone-specific protein, osteonectin. In addition, the cells produced sulfated macromolecules electrophoretically identical to those positively identified as the bone proteoglycan in parallel cultures of fetal bovine bone cells. This technique provides a useful system for the study of osteoblast metabolismin vitro

Key words

Osteoblasts Extracellular matrix Cell culture Bone-specific proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doty SB, Schofield BH (1976) Enzyme histochemistry of bone and cartilage cells. Prog in Histochem and Cytochem 8:1–38Google Scholar
  2. 2.
    Peck WA, Carpenter J, Messinger K, DeBra D (1973) Cyclic 3′5′ adenosine monophosphate in isolated bone cells. Response to low concentrations of parathyroid hormone. Endocrinology 92:692–697CrossRefPubMedGoogle Scholar
  3. 3.
    Eyre DS (1980) Collagen: Molecular diversity in the body's protein scaffold. Science 207:1315–1322CrossRefPubMedGoogle Scholar
  4. 4.
    Bornstein P, Sage H (1980) Structurally distinct collagen types. Ann Rev Biochem 49:957–1003CrossRefPubMedGoogle Scholar
  5. 5.
    Herring GM (1972) In: Bourne GH (ed) The biochemistry and physiology of bone Vol 1. Academic, New York, pp 127–189CrossRefGoogle Scholar
  6. 6.
    Hauschka PV, Lian JB, Gallop PM (1975) Direct identification of the calcium-binding amino acid, γ-carboxyglutamate, in mineralized tissue. Proc Nat Acad Sci USA 72:3925–3929CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Price PA, Otsuka AS, Poser JW, Kirstaponis J, Raman J (1976) Characterization of γ-carboxyglutamic acid containing protein from bone. Proc Nat Acad Sci USA 73:1447–1451CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Termine JD, Belcourt AB, Conn KM, Kleinman KM (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256:10403–10408PubMedGoogle Scholar
  9. 9.
    Fisher LW, Termine JD, Dejter D, Whitson SW, Conn KM, Yanagashita M, Kimura JH, Hascall VC, Kleinman HK, Hassell JR, Nilsson B (1983) Proteoglycans of developing bone. J Biol Chem 258:6588–6594PubMedGoogle Scholar
  10. 10.
    Fisher LW, Whitson SW, Avioli LA, Termine JD (1983) Matrix sialoprotein of developing bone. J Biol Chem 258:12723–12727PubMedGoogle Scholar
  11. 11.
    Majeska RJ, Rodan SB, Rodan GA (1978) Maintenance of parathyroid response in clonal rat osteosarcoma lines. Exp Cell Res 111:465–468CrossRefPubMedGoogle Scholar
  12. 12.
    Sudo H, Kodama H-A, Amagai Y, Yamamota S, Kasai S (1983)In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191–198CrossRefPubMedGoogle Scholar
  13. 13.
    Williams DC, Boder GB, Toomey RE, Paul DC, Hillman CC Jr, King KL, Van Frank RM, Johnston CC Jr (1980) Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif Tissue Int 30:233–246CrossRefPubMedGoogle Scholar
  14. 14.
    Peck WA, Birge SJ, Fedak SA (1964) Bone cells: Biochemical and biological studies after enzymatic isolation. Science 146:1476CrossRefPubMedGoogle Scholar
  15. 15.
    Wong GL, Cohn DV (1975) Target cells in bone for parathormone and calcitonin are different: Enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces. Proc Nat Acad Sci USA 72:3167–3171CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jones SJ, Boyde A (1977) The migration of osteoblasts. Cell Tissue Res 184:179–193CrossRefPubMedGoogle Scholar
  17. 17.
    Ecarot-Charrier B, Glorieux FH, van der Rest M, Pereira G (1983) Osteoblasts isolated from mouse calvaria initiate matrix mineralization. J Cell Biol 96:639–643CrossRefPubMedGoogle Scholar
  18. 18.
    Bard DR, Dickens MJ, Smith AU, Zarek JM (1972) Isolation of living cells from mature mammlian bone. Nature 236:314CrossRefPubMedGoogle Scholar
  19. 19.
    Howard GA, Turner RT, Sherrard DJ, Baylink DJ (1981) Human bone cells in culture metabolize 25-hydroxyvitamin D3 to 1,25-dihydroxy vitamin D3 and 24,25-dihydroxy vitamin D3. J Biol Chem 256:7738–7740PubMedGoogle Scholar
  20. 20.
    Wergedal JE, Baylink DJ (1984) Characterization of cells isolated and cultured from human bones. Proc Soc Exp Biol and Med 176:27–31CrossRefGoogle Scholar
  21. 21.
    Mills BG, Singer FR, Weiner LP, Holst PA (1979) Long-term culture of cells from bone affected by Paget's disease. Calcif Tissue Int 29:79–87CrossRefPubMedGoogle Scholar
  22. 22.
    Maurizi M, Binaglia L, Donti E, Ottaviani F, Pauldetti G, Venti Donti G (1983) Morphological and functional characteristics of human temporal-bone cells cultures. Cell Tissue Res 229:505–513CrossRefPubMedGoogle Scholar
  23. 23.
    Gallagher JA, Beresford JN, Poser J, Coulton LA, Kanis JA, Russell RGG (1982) Human bone cell cultures—studies of steroid action. Calcif Tissue Int 34(suppl):33Google Scholar
  24. 24.
    Beresford JN, Gallagher, JA, Poser JW, Russell RGG (1984) Production of osteocalcin by human bone cells in vitro. Effects of 1,25-(OH)2D3, 24,25(OH)2D3, parathyroid hormone, and glucocorticoids. Metab Bone Dis Rel Res 5:229–234CrossRefGoogle Scholar
  25. 25.
    MacDonald BR, Gallagher JA, Ahnfelt-Ronne I, Beresford JN, Gowen M, Russell RGG (1984) Effects of bovine parathyroid hormone and 1,25-dihydroxyvitamin D3 on the production of prostaglandins by cells derived from human bone. FEBS Lett 169:49–52CrossRefPubMedGoogle Scholar
  26. 26.
    Whitson SW, Harrison W, Dunlap MK, Bowers DE Jr, Fisher LW, Gehron Robey P, Termine JD (1984) Fetal bovine bone cells synthesize bone-specific matrix proteins. J Cell Biol 99:607–614CrossRefPubMedGoogle Scholar
  27. 27.
    Binderman I, Somjen D (1982) Serum factors and calcium modulates growth of osteoblast-like cells in culture. In: Silbermann M, Slavkin HC (eds) Current advances in skeletogenesis: Development, biomineralization, mediators, and metabolic bone diseases. Elsevier Science Pub. Co. Amsterdam, pp 338–342Google Scholar
  28. 28.
    Rosenquist TH, Slavin BG, Burnic S (1971) Pearson silvergelatin method for light microscopy of 0.2–0.5 μ plastic sections. Stain Tech 46:253–257CrossRefGoogle Scholar
  29. 29.
    Eastman ST, Aurbach GD (1982) Determination of plasma cyclic AMP with automated radioimmunoassay system (Gamma-Flo). J Cyclic Nucleotide Res 8:297–307PubMedGoogle Scholar
  30. 30.
    Gehron Robey P, Kirshner JA, Conn KM, Termine JD (1985) Biosynthesis of non-collagenous proteins by bone cellsin vitro. In: Ornoy A, Harrell A, Sela J (eds) Current advances in skeletogenesis. Elsevier Science Pub. Co., Amsterdam, pp 461–466Google Scholar
  31. 31.
    Tenenbaum H, Heersche JMN (1982) Differentiation of osteoblasts and formation of mineralized bonein vitro. Calcif Tissue Int 34:76–79CrossRefPubMedGoogle Scholar
  32. 32.
    Rowe DW, Shapiro JR (1982) Biochemical features of cultured skin fibroblasts from patients with Osteogenesis Imperfecta. In: Akeson W, Bornstein P, Glimcher M (eds) Heritable disorders of connective tissue. C.V. Mosby, St. Louis, pp 269–282Google Scholar
  33. 33.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature (London) 227:680–685CrossRefGoogle Scholar
  34. 34.
    Sykes BC, Puddle B, Francis M, Smith R (1976) The estimation of two collagens from human dermis by interrupted gel electrophoresis. Biochem Biophys Res Comm 72:1472–1480CrossRefPubMedGoogle Scholar
  35. 35.
    Bumol IF, Reisfeld RA (1982) Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human myeloma cells. Proc Nat Acad Sci USA 79:1245–1249CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bonner WM, Laskey RA (1974) A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46:83–88CrossRefPubMedGoogle Scholar
  37. 37.
    Goldring SR, Dayer JM, Russell RGG, Mankin HJ, Krane SM (1978) Response to hormones of cells cultured from giant tumors of bone. J Clin Endocrinol 46:425–433CrossRefGoogle Scholar
  38. 38.
    Beresford JN, MacDonald BR, Russell RGG, Gallagher JA (1984) Parathyroid hormone responses in cultured human bone cells. Calcif Tissue Int 36(suppl):44Google Scholar
  39. 39.
    Binderman I, Duksin D, Harell A, Katui E, Sachs L (1974) Formation of bone tissue in culture from isolated bone cells. J Cell Biol 61:427–439CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nijweide PJ, van Iperen-van Gent AS, Kawailarang-de Hass EWM, van der Plas A, Wassenaar AM (1982) Bone formation and calcification by isolated osteoblast-like cells. J Cell Biol 93:318–323CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Pamela Gehron Robey
    • 1
  • John D. Termine
    • 1
  1. 1.Mineralized Tissue Research Branch, National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA

Personalised recommendations