Primates

, Volume 39, Issue 1, pp 79–84 | Cite as

Protein polymorphism and genetic divergence in slow loris (genusNycticebus)

  • Bing Su
  • Wen Wang
  • Ya-Ping Zhang
Short Communication

Abstract

In this study, protein electrophoresis was assayed to detect genetic variation in GenusNycticebus. A total of 29 samples (2N. coucang and 27N. pygmaeus) were analyzed for 42 genetic loci. In the 27 samples ofN. pygmaeus, 4 loci were observed to be polymerphic. Therefore, the estimatedP value (proportion of polymorphic loci) is 0.095, theA value (average number of alleles each locus) is 1.045, and theH value (mean individual heterozygosity) is 0.040. After comparing theH ofN. pygmaeus with those of other primates reported, we found that the protein variation inN. pygmaeus is slightly lower than the average level. Additionally, we also observed obivious allele difference betweenN. pygmaeus andN. coucang. There are no shared alleles between these two species in eight loci. TheNei's genetic distance between them was calculated as 0.2541, which falls in the spectrum of genetic difference between species in primates.

Key Words

GenusNycticebus Protein electrophoresis Genetic diversity Genetic divergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, Z. P.;Zhang, Y. P.;Shi, L. M.;Liu R. Q., Wang, Y. X. 1993. Studies on the chromosomes of genusNycticebus.Primates, 34: 47–53CrossRefGoogle Scholar
  2. Dao, V. T. 1960. Sur une nouvelle espece deNycticebus au Vuetnam.Zool. Anz., 164: 240–243.Google Scholar
  3. Ferrand, N. 1990. Biochemical and genetic studies on rabbit hemoglobin: II. Electrophoretic polymorphism of the α-chain.Biochem. Genet., 28: 117–122.PubMedCrossRefGoogle Scholar
  4. Groves, C. P. 1971. Systematics of the genusNycticebus. In:Proceedings of the 3rd International Congress of Primatology, Zurich, Vol. 1, Karker, Basel, pp. 44–53.Google Scholar
  5. Hill, W. C. 1953.Primates: Comparative Anatomy and Taxonomy: I Strepsirhini. Edinburgh Univ. Press, Edinburgh.Google Scholar
  6. Kawamoto, Y.;Ischak, Tb. M. 1981. Genetic differentiation of Indonesian crab-eating macaque (Macaca fascicularis): I. Preliminary report on blood protein, polymorphism.Primates, 22: 237–252.CrossRefGoogle Scholar
  7. Kawamoto, Y.;Nozawa, K.;Matsubayashi, K.;Gotoh, S. 1988. A population-genetic study of crabeating macaques (Macaca, fascicularis) on the island of Angaur, Palau, Micronesia.Folia Primatol., 51: 169–181.PubMedCrossRefGoogle Scholar
  8. Ma, S. L.;Wang, Y. X. 1988. The recent distribution, status and conservation of primates in China.Acta Theriol. Sinica, 8: 250–260.Google Scholar
  9. Meireles, C. M. M.;Sampaio, M. I. C.;Schneider, H.;Schneider, M. P. C. 1992. Protein variation, taxonomy and differentiation in five species of marmosets (genusCallithrix).Primates, 33: 227–238.CrossRefGoogle Scholar
  10. Melnick, D. J. 1988. The genetic structure of a primate species: rhesus macaques and otherCercopithecine monkeys.Int. J. Primatol., 9: 195–231.Google Scholar
  11. Melnick, D. J.;Jolly, C. J.;Kidd, K. K. 1984. The genetics of a wild population of rhesus monkeys (Macaca mulatta): I. Genetic variability within and between social groups.Amer. J. Phys. Anthropol., 63: 341–360.CrossRefGoogle Scholar
  12. Melo, A. C. A.;Sampaio, M. I. C.;Schneider, M. P. C.;Schneider, H. 1992. Biochemical diversity and genetic distance in two species of the genusSaguinus.Primates, 33: 217–225.CrossRefGoogle Scholar
  13. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals.Genetics, 89: 583–590.PubMedGoogle Scholar
  14. Nevo, E.;Beiles, A.;Ben-Schlomo, R. 1984. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. In:Evolutionary Dynamics of Genetic Diversity,Mani,G. S. (ed.), Springer, Berlin.Google Scholar
  15. Newman, A.;Bush, M.;Wildt, D. E.;Van Dam, D.;Frankenhuis, M. Th.;Simmons, L.;Phillips, L.;O'Brien, S. J. 1985 Biochemical genetic variation in eight endangered or threatened felid species.J. Mammal., 66: 256–267.CrossRefGoogle Scholar
  16. Nowak, R. M. 1991.Walker's Mammals of the World, Vol. 1 (5th ed.). The Johns Hopkins Univ. Press, Baltimore & London.Google Scholar
  17. Nozawa, K.;Shotake, T.;Minezawa, M.;Kawamoto, Y.;Hayasaka, K.;Kawamoto, S.;Ito, S. 1991. Population genetics of Japanese monkeys: III. Ancestry and differentiation of local populations.Primates, 32: 411–435.CrossRefGoogle Scholar
  18. Nozawa, K.;Shotake, T.;Ohkura, Y.;Tanabe, Y. 1977. Genetic variations within and between species of Asian macaques.Jap. J. Genet., 52: 15–30.Google Scholar
  19. O'Brien, S. J.;Wildt, D. E. 1983. The cheetah is depauperate in genetic, variation.Science, 221: 459–462.CrossRefPubMedGoogle Scholar
  20. Pasteur, N.;Pasteur, G. 1990.Practical, Isozyme, Genetics, Haslted Press, New York.Google Scholar
  21. Petter, J. J. 1979. Classification of the prosimians. In:The Study of Prosimian Behavior,Doyle,G. A.;Martin,R. D. (eds.), Academic Press, New York, pp. 1–44.Google Scholar
  22. Shaw, C. R.;Prasad, R. 1970. Starch gel electrophoresis of enzymes: a complication of recipes.Biochem. Genet., 4: 297–320.PubMedCrossRefGoogle Scholar
  23. Shotake, T.;Nozawa, K. 1984. Blood protein variation in baboons: II. Genetic variability within and among herds of gelada baboons in the central Ethiopian plateau.J. Human Evol., 13: 265–274.CrossRefGoogle Scholar
  24. Silva, B. T. F.;Sampaio, M. I. C.;Schneider, H.;Schneider, M. P. C.;Montoya, E.;Encarnacion, F.;Callegari-Jacques, S. M.;Salzano, F. M. 1993. Protein electrophoretic variability inSaimiri and the question of its species status.Amer. J. Primatol., 29: 183–193.CrossRefGoogle Scholar
  25. Smith, M. H. 1978. Spatial temporal dynamical of the genetic organization of small mammal populations. In:Proceedings of the Population Dynamics of Small Mammals, Pymatuning Laboratory, Linesille, Pennsylvania.Google Scholar
  26. Su, B.;Shi, L. M. 1994. Genetic diversity in giant panda evidence from protein electrophoresis.Chinese Sci. Bull. 39: 1305–1309.Google Scholar
  27. Su, B.;Shi, L. M. 1995. Genetic diversity in the snub-nosed monkey (Rhinopithecus bieti) as estimated by protein electrophoresis.Conserv. Biol., 9: 947–951.CrossRefGoogle Scholar
  28. Tan, B. J. 1995. The status of primates in China.Primate Conserv., 5: 63–81.Google Scholar
  29. Wang, W.;Su, B.;Lan, H. 1996. Interspecific differentiation of the slow lorises (genusNycticebus) inferred from ribosomal DNA restriction maps.Zool. Res., 17: 89–93.Google Scholar
  30. Zhang, Y. P.;Chen, Z. P.;Shi, L. M. 1993. Phylogeny of the slow loris (genusNycticebus): an approach using mitochondrial DNA restriction enzyme, analysis.Int. J. Primatol., 14: 167–175.CrossRefGoogle Scholar

Copyright information

© Japan Monkey Centre 1997

Authors and Affiliations

  • Bing Su
    • 1
  • Wen Wang
    • 2
  • Ya-Ping Zhang
    • 2
  1. 1.Human Gentics CenterThe University of Texas, Houston Health Science CenterHoustonUSA
  2. 2.Laboratory of Cellular and Molecular EvolutionKunming Institute of Zoology, The Chinese Academy of ScienceKunningP.R. China

Personalised recommendations