Advertisement

Primates

, Volume 39, Issue 2, pp 199–209 | Cite as

Paternity determination in captive lowland gorillas and orangutans and wild mountain gorillas by microsatellite analysis

  • Dawn Field
  • Leona Chemnick
  • Martha Robbins
  • Karen Garner
  • Oliver Ryder
Article

Abstract

Paternity exclusion studies provide useful information for testing certain theories of behavioral ecology and for the management and conservation of both wild and captive populations of endangered species. This study used eight human nuclear microsatellite loci, in the absence of species-specific PCR primers, to genetically identify the sires of 12 captive lowland gorillas (Gorilla gorilla gorilla) and 2 captive orangutans (Pongo pygmaeus pygmaeus andPongo p. abelii). Parentage assignments were confirmed by excluding all except a single potential sire for each offspring with the least two loci. Sire-offspring relationships were verified in 12 of the 14 cases, and reassigned in the case of two gorilla offspring. The orangutan paternity typing was supplemented by DNA fingerprinting. Additionally, five of the eight microsatellite loci, in conjunction with behavioral data, were used for a non-exhaustive set of paternity exclusions for five wild mountain gorillas (Gorilla g. beringei). The eight loci described in this study should be useful additions to the tools available for the study of genetics in the great apes.

Key Words

Paternity testing Microsatellites Gorilla gorilla Pongo pygmaeus DNA typing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashley, M.;Dow, B. 1994. The use of microsatellite analysis in population biology: background, methods and potential applications.Exs, 69: 185–201.PubMedGoogle Scholar
  2. Baker, A. J.;Dietz, J. M.;Kleiman, D. G. 1993. Behavioural evidence for monopolization of paternity in multimale groups of golden lion tamarins.Anim. Behav., 46: 1159–1161.Google Scholar
  3. Bowcock, A. M.;Ruiz-Linares, A.;Tomfohrde, J.;Minch, E.;Kidd, J. R.;Cavalli-Sforza, L. L. 1994. High resolution of human evolutionary trees with polymorphic microsatellites.Nature, 368: 455–457.PubMedCrossRefGoogle Scholar
  4. Dowling, A. T.;Ryder, O. A. 1988. Switched identity of two Przewalski's horse mares detected by blood typing.Zoo Biol. 7: 81–84.CrossRefGoogle Scholar
  5. Boyce, M. S. 1992. Population viability analysis.Annu Rev. Ecol. Syst. 23: 481–506.CrossRefGoogle Scholar
  6. Caccone, A.;Powell, J. R. 1989. DNA divergence among hominoids.Evolution, 43: 925–942.CrossRefGoogle Scholar
  7. DeBoer, L. E. M. 1994. Development of coordinated genetic and demographic breeding programmes. In:Creative Conservation: Interactive Management of Wild and Captive Animals,Olney,P. J. S.;Mace,G. M.;Feistner,A. T. C. (eds.) Chapman & Hall, New York, pp. 304–311.Google Scholar
  8. Ellegren, H. 1991. DNA typing of museum birds.Nature, 354: 113.PubMedCrossRefGoogle Scholar
  9. Estoup, A.;Solignac, M.;Harry, M.;Cornuet, J. M. 1993. Characterization of (GT)n and (CT)n microsatellites in two insect species:Apis mellifera andBombus terrestris.Nucleic Acids Res., 21 (6): 1427–1431.PubMedCrossRefGoogle Scholar
  10. Fossey, D. 1982. Reproduction among free-living mountain gorillas.Amer. J. Primatol. (Suppl.), 1: 97–104.CrossRefGoogle Scholar
  11. Gagneux, P.;Woodruff, D. S.;Boesch, C. 1997. Furtive mating by female chimpanzees.Nature, 387: 327–328.CrossRefGoogle Scholar
  12. Garner, K. J.; Ryder, O. A. 1992a. Mitochondrial DNA D-loop sequence phylogenies of gorillas. XIVth Congress of the International Primatological Society, Strasbourg, France. Molecular Genetics and Evolution, Abstract 740.Google Scholar
  13. Garner, K. J.;Ryder, O. A. 1992b. Some applications of PCR to studies in wildlife genetics.Symp. Zool. Soc. London, 64: 167–181.Google Scholar
  14. Garner, K. J.;Ryder, O. A. 1996. Mitochondrial DNA diversity in gorillas.Molecular Phylogenet. Evol., 10: 571–589.Google Scholar
  15. Geyer, C. J.;Ryder, O. A.;Chemnick, L. G.;Thompson, E. A. 1993. Analysis of relatedness in the California Condors, from DNA fingerprints.Molecular Biol. Evol., 10: 571–589.Google Scholar
  16. Hagelberg, E.;Gray, I. C.;Jeffreys, A. J. 1991. Identification of the skeletal remains of a murder victim by DNA analysis.Nature, 352: 427–429.PubMedCrossRefGoogle Scholar
  17. Harcourt, A. H. 1981. Intermale competition and the reproductive behavior of the great apes. In:Reproductive Biology of the Great Apes, Academic Press, pp. 301–318.Google Scholar
  18. Hudson, T. J.;Engelstein, M.;Lee, M. K.;Ho, E. C.;Rubenfeld, M. J.;Adams, C. P.;Housman, D. E.;Dracopoli, N. C. 1992. Isolation and chromosomal assignment of 100 highly informative human simple sequence repeat polymorphisms.Genomics, 13: 622–629.PubMedCrossRefGoogle Scholar
  19. Lande, R.;Barrowclough, G. F. 1987. Effective population size, genetic variation, and their use in population management. In:Viable Populations for Conservation,Soulé,M. E. (ed.) Cambridge Univ. Press. Cambridge, pp. 87–124.Google Scholar
  20. Martin, R. D.;Dixson, A. F.;Wickings, E. J. 1992.Paternity in Primates: Genetic Tests and Theories. Karger Press, New York.Google Scholar
  21. Moore, S. S.;Sargeant, L. L.;King, T. J.;Mattick, J. S.;Georges, M.;Hetzel, D. J. S. 1991. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species.Genomics, 10: 654–660.PubMedCrossRefGoogle Scholar
  22. Morin, P. A.;Moore, J. J.;Chakraborty, R.;Jin, L.;Goodall, J.;Woodruff, D. S. 1994. Kin selection, social structure, gene flow, and the evolution of chimpanzees.Science, 265: 1193–1201.PubMedCrossRefGoogle Scholar
  23. Morin, P. A.;Ryder, O. A. 1991. Founder contribution and pedigree inference in a captive breeding colony of lion-tailed macaques, using mitochondrial DNA and DNA fingerprint analyses.Zoo Biol., 10(4): 341–352.CrossRefGoogle Scholar
  24. Morin, P. A.;Woodruff, D. S. 1996. Non-invasive genotyping for vertebrate conservation. In:Molecular Genetic Approaches in Conservation,Smith,T. B.;Wayne,R. K. (eds.), Oxford Univ. Press, New York, pp. 298–313.Google Scholar
  25. Ohsawa, H.;Inoue, M.;Takenaka, O. 1993. Mating strategy and reproductive success of male patas monkeys (Erythrocebus patas).Primates, 34: 533–544.CrossRefGoogle Scholar
  26. Paul, A.;Kuester, J.;Arnemann, J. 1992. DNA fingerprinting reveals that infant care by male Barbary macaques (Macaca sylvanus) is not paternal investment.Folia Primatol., 58: 93–98.PubMedCrossRefGoogle Scholar
  27. Paul, A.;Kuester, J.;Timme, A.;Arnemann, J. 1993. The association between rank, mating effort, and reproductive success in male Barbary macaques (Macaca sylvanus).Primates, 34: 491–502.CrossRefGoogle Scholar
  28. Pope, T. R. 1990. The reproductive consequences of male cooperation in the red howler monkey: paternity exclusion in multi-male and single-male troops using genetic markers.Behav. Ecol. Sociobiol. 27: 439–446.CrossRefGoogle Scholar
  29. Pope, T. R. 1996. Socioecology, population fragmentation, and patterns of genetic loss in endangered primates. In:Conservation Genetics: Case Histories from Nature,Hamrick,J. L. (ed.), Chapman & Hall, New York, pp. 119–159.Google Scholar
  30. Queller, D.;Strassmann, J.;Hughes, C. 1993. Microsatellites and kinship.Trends Ecol. Evol., 8: 285–290.CrossRefGoogle Scholar
  31. Robbins, M. M. 1995. A demographic analysis of male life history and social structure of mountain gorillas.Behaviour, 132: 21–48.Google Scholar
  32. Robbins, M. M. 1996. The social system of mountain gorillas: variation in male life history, social behavior, and steroid hormone profiles. Ph.D. thesis, Univ. of Wisconsin, Madison.Google Scholar
  33. Ruvulo, M.;Pan, D.;Zehr, S.;Goldberg, T.;Disotell, T. R.;von Dornum, M. 1994. Gene trees and hominoid phylogeny.Proc. Natl. Acad. Sci. USA, 91: 8900–8904.CrossRefGoogle Scholar
  34. van Schaik, C. P.;van Hooff, J. A. R. A. M. 1996. Toward an understanding of the orangutan's social system. In:Great Ape Societies,McGrew,W. C.;Marchant,L. F.;Nishida,T. (eds.), Univ. of Cambridge Press, Cambridge, pp. 3–15.Google Scholar
  35. Schurmann, C. L.;van Hooff, J. A. R. M. 1986. Reproductive strategies of the orang-utan: new data and a reconsideration of existing sociosexual models.Int. J. Primatol., 7: 265–287.Google Scholar
  36. Sibley, C. G.;Ahlquist, J. E. 1987. DNA hybridization evidences of hominoid phylogeny: results from an expanded data set.J. Molecular Evol., 26(1–2): 99–121.CrossRefGoogle Scholar
  37. Srikwan, S.;Field, D.;Woodruff, D. S. 1996. Noninvasive genotyping of free-ranging rodents with heterologous PCR primer pairs for hypervariable nuclear microsatellite loci.J. Sci. Soc. Thailand, 22: 267–274.CrossRefGoogle Scholar
  38. Strand, M.;Prolla, T.;Liskay, R.;Petes, T. 1994. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair.Nature, 365: 274–276.CrossRefGoogle Scholar
  39. Strier, K. B. 1997. Behavioral ecology and conservation biology of primates and other animals.Adv. Stud. Behav., 26: 101–158.CrossRefGoogle Scholar
  40. Takenaka, O.;Kawamoto, S.;Udono, T.;Arakawa, M.;Takasaki, H.;Takenaka, A. 1993. Chimpanzee microsatellite PCR primers applied to paternity testing in a captive colony.Primates, 34: 357–363.CrossRefGoogle Scholar
  41. Tautz, D.;Schlötterer, C. 1994. Simple sequences.Cur. Opin. Genet. Develop., 4: 832–837.CrossRefGoogle Scholar
  42. Tutin, C. E. G. 1996. Ranging and social structure of bowland gorillas in the Lope Reserve, Gabon. In:Great Ape Societies,McGrew,W. C.;Marchant,L. F.;Nishida,T. (eds.), Univ. of Cambridge Press, Cambridge, pp. 58–70.Google Scholar
  43. Walsh, P. S.;Metzger, D. A.;Higuchi, R. 1991 Chelex 100 as a medium for simple extraction of DNA for PCR based typing from forensic material.Bio Techniq., 10(4): 506–513.Google Scholar
  44. Watts, D. P. 1990. Mountain gorilla life histories, reproductive competition, and sociosexual behavior and some implications for captive husbandry.Zoo Biol., 9: 185–200.CrossRefGoogle Scholar
  45. Watts, D. P. 1991. Mountain gorilla reproduction and sexual behavior.Amer. J. Primatol., 24: 211–225.CrossRefGoogle Scholar
  46. Watts, D. P. 1992. Social relationships of immigrant and resident female mountain gorillas: I. Malefemale relationships.Amer. J. Primatol., 28: 159–181.CrossRefGoogle Scholar
  47. Watts, D. P.;Pusey, A. E. 1993. Behavior of juvenile and adolescent great apes. In:Juvenile Primates: Life History, Development, and Behavior,Pereira,M. E.;Fairbanks,L. A. (eds.), Oxford Univ. Press, New York, pp. 148–167.Google Scholar
  48. Wayne, R. K.;Bruford, M. W.;Girman, D.;Rebholz, W. E. R.;Sunnucks, P.;Taylor, A. C. 1994. Molecular genetics of endangered sopecies. In:Creative Conservation: Interactive Management of Wild and Captive Animals,Olney,P. J. S.;Mace,G. M.;Feistner,A. T. C. (eds.), Chapman & Hall, New York, pp. 92–117.Google Scholar
  49. Weber, A. W.;Vedder, A. 1983. Population dynamics of the Virunga gorillas: 1959–1978.Biol. Conserv., 26: 341–366.CrossRefGoogle Scholar
  50. Wicking, E. J.;Bossi, T.;Dixson, A. F. 1993. Reproductive success in the mandrill,Mandrillus sphinx: correlations of male dominance and mating success with paternity, as determined by DNA finger-printing.J. Zool. London, 231: 563–574.Google Scholar
  51. Yamagiwa, J. 1987. Male life history and the social structure of wild mountain gorillas (Gorilla gorilla beringei). In:Evolution and Coadaptation in Biotic Communities,Kawano,S.;Connell,J. J.;Hidaka,T. (eds.), Univ. of Tokyo Press, Tokyo, pp. 31–51.Google Scholar

Copyright information

© Japan Monkey Centre 1998

Authors and Affiliations

  • Dawn Field
    • 1
    • 2
  • Leona Chemnick
    • 1
  • Martha Robbins
    • 3
  • Karen Garner
    • 4
  • Oliver Ryder
    • 1
  1. 1.Center for Reproduction of Endangered SpeciesZoological Society of San DiegoSan DiegoUSA
  2. 2.University of California, San DiegoLa JollaUSA
  3. 3.Department of Zoology, Birge Hall 430 Lincoln DriveUniversity of WisconsinMadisonUSA
  4. 4.USDA Forest ServiceDelawareUSA

Personalised recommendations