, Volume 40, Issue 1, pp 105–130 | Cite as

The effects of dominance rank and group size on female lifetime reproductive success in wild long-tailed macaques,Macaca fascicularis

  • Maria A. van Noordwijk
  • Carcl P. van Schaik


Demographic changes were recorded throughout a 12-year period for three social groups ofMacaca fascicularis in a natural population at Ketambe (Sumatra, Indonesia). We examined the prediction that females' lifetime reproductive success depended on dominance rank and group size. Average birth rate was 0.53 (184 infants born during 349 female years). For mature females (aged 8–20 yr) birth rate reflected physical condition, being higher in years with high food availability and lower in the year following the production of a surviving infant. High-ranking females were significantly more likely than low-ranking ones to give birth again when they did have a surviving offspring born the year before (0.50 vs 0.26), especially in years with relatively low food availability (0.37 vs 0.10). Controlled comparisons of groups at different sizes indicate a decline in birth rate with rroup size only once a group has exceeded a certain size. The dominance effect on birth rate tended to be strongest in large groups.

Survival of infants was rank-dependent, but the survival of juveniles was not. There was a trend for offspring survival to be lower in large groups than in mid-sized or small groups. However, rank and group size interacted, in that rank effects on offspring survival were strongest in large groups. High-ranking females were less likely to die themselves during their top-reproductive years, and thus on average had longer reproductive careers.

We estimated female lifetime reproductive success based on calculated age-specific birth rates and survival rates. The effects of rank and group size (contest and scramble) on birth rate, offspring survival, age of first reproduction for daughters, and length of reproductive career, while not each consistently statistically significant, added up to substantial effects on estimated lifetime reproductive success. The group size effects explain why large groups tend to split permanently.

Since females are philopatric in this species, and daughters achieve dominance rank positions similar to their mother, a close correlation is suggested between the lifetime reproductive success of mothers and daughters. For sons, too, maternal dominance affected their reproductive success: high-born males were more likely to become top-dominant (in another group). These data support the idea that natural selection has favored the evolution of a nepotistic rank system in this species, even if the annual benefits of dominance are small.

Key words

Lifetime reproductive success Macaca fascicularis Birth rate Mortality Survival Dominance rank Group size 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts, S.;Altmann, J. 1995. Balancing costs and opportunities: dispersal in male baboons.Amer. Naturalist, 145: 279–306.CrossRefGoogle Scholar
  2. Altmann, J.;Alberts, S. C.;Haines, S. A.;Dubach, J.;Muruthi, P.;Coote, T.;Geffen, E.;Cheesman, D. J.;Mututua, R. S.;Saiyalel, S. N.;Wayne, R. K.;Lacy, R. C.;Bruford, M. W. 1996. Behavior predicts genetic structure in a wild primate group.Proc. Natl. Acad. Sci. USA 93: 5797–5801.PubMedCrossRefGoogle Scholar
  3. Altmann, J.;Hausfater, G.;Altmann, S. A. 1988. Determinants of reproductive success in savannah baboons,Papio cynocephalus. In:Reproductive Success, Clutton-Brock, T. H. (ed.), The Univ. of Chicago Press, Chicago, pp. 403–418.Google Scholar
  4. Altmann, J.;Muruthi, P. 1988. Differences in daily life between semiprovisioned a wild-feeding baboons.Amer. J. Primatol. 15: 213–221.CrossRefGoogle Scholar
  5. Barton, R. A.;Whiten, A. 1993. Feeding competition among female olive baboons,Papio anubis.Anim. Behav., 46: 777–789.CrossRefGoogle Scholar
  6. Bercovitch, F. B.;Berard, J. D. 1993. Life history costs and consequences of rapid reproductive maturation in female rhesus macaques.Behav. Ecol. Sociobiol., 32: 103–109.CrossRefGoogle Scholar
  7. Borries, C. 1993. Ecology of female social relationships: hanuman langurs (Presbytis entellus) and thevan Schaik model.Folia Primatol., 61: 21–30.PubMedCrossRefGoogle Scholar
  8. Borries, C.;Sommer, V.;Srivastava, A. 1991. Dominance, age, and reproductive success in free-ranging female hanuman langurs.Int. J. Primatol., 12: 230–257.CrossRefGoogle Scholar
  9. Brennan J.;Anderson, J. R. 1988. Varying responses to feeding competition in a group of rhesus monkeys (Macaca mulatta).Primates, 29: 353–360.CrossRefGoogle Scholar
  10. Bulger, J.;Hamilton III, W. J. 1987. Rank and density correlates of inclusive fitness measures in a natural chacma baboon (Papio ursinus) troop.Int. J. Primatol., 8: 635–650.CrossRefGoogle Scholar
  11. Busse, C. D. 1984. Spatial structure of chacma baboon groups.Int. J. Primatol., 5: 247–261.CrossRefGoogle Scholar
  12. Cheney, D. L.;Seyfarth, R. M.;Andelman, S. J.;Lee, P. C. 1988. Reproductive success in vervet monkeys. In:Reproductive Success, Clutton-Broock, T. H. (ed.) The Univ. of Chicago Press, Chicago, pp. 384–402.Google Scholar
  13. Clutton-Brock, T. H. (ed.). 1988. Reproductive success. In:Reproductive Success, The Univ. of Chicago Press, Chicago, pp. 472–485.Google Scholar
  14. Collins, D. A. 1984. Spatial pattern in a troop of yellow baboons (Papio cynocephalus) in Tazania.Anim. Behav. 32: 536–553.CrossRefGoogle Scholar
  15. Deutsch, J. C.;Lee, P. C. 1991. Dominance and feeding competition in captive rhesus monkeys.Int. J. Primatol., 12: 615–628.CrossRefGoogle Scholar
  16. Dittus, W. P. J. 1977. The social regulation of population density and age-sex distribution in the toque monkey,Behaviour, 63: 281–322.CrossRefGoogle Scholar
  17. Dittus, W. P. J. 1988. Group fission among wild toque macaques as a consequence of female resource competition and environmental stress.Anim. Behav., 36: 1626–1645.CrossRefGoogle Scholar
  18. Fedigan, L. M.;Fedigan, L.;Gouzoules, S.;Gouzoules, H.;Koyama, N. 1986. Lifetime reproductive success in female Japanese macaques.Folia Primatol., 47: 143–157.PubMedCrossRefGoogle Scholar
  19. Griffiths, M.;van Schaik, C. P. 1993. The impact of human traffic on the abundance and activity periods of Sumatran rain forest wildlife.Conserv. Biol., 7: 623–626.CrossRefGoogle Scholar
  20. Hall, C. L.;Fedigan, L. M. 1997. Spatial benefits afforded by high rank in white-faced capuchins.Anim. Behav., 53: 1069–1082.CrossRefGoogle Scholar
  21. Hausfater, G.;Altmann, J.;Altmann, S. 1982. Long-term consistency of dominance relations among female baboons.Science, 217: 752–755.PubMedCrossRefGoogle Scholar
  22. Henzi, S. P.;Lycett, J. E.;Piper, S. E. 1997. Fission and troop size in a mountain baboon populationAnim. Behav. 53: 525–535.CrossRefGoogle Scholar
  23. Hill, D. A.;Okayasu, N. 1996. Determinants of dominance among female macaques: nepotism, demography and danger. In:Evolution and Ecology of Macaque Societies,Fa J. E.;Lindburg,D. G. (eds.), Cambridge Univ. Press, Cambridge, pp. 459–472.Google Scholar
  24. Itoigawa, N.;Tanaka, T.;Ukai, N.;Fujii, H.;Kurokawa, T.;Koyama, T.;Ando, A.;Watanabe, Y.;Imakawa, S. 1992. Demography and reproductive parameters of a free-ranging group of Japanese macaques (Macaca fuscata) at Katsuyama.Primates, 33: 49–68.CrossRefGoogle Scholar
  25. Janson, C. H. 1990a. Social correlates of individual spatial choice in foraging groups of brown capuchin monkeys,Cebus apella.Anim. Behav., 40: 910–921.CrossRefGoogle Scholar
  26. Janson, C. H. 1990b. Ecological consequences of individual spatial choice in foraging groups of brown capuchin monkeys,Cebus apella.Anim. Behav., 40: 922–934.CrossRefGoogle Scholar
  27. Kavanagh, M.;Laursen, R. 1984. Breeding seasonality among long-tailed macaques,Macaca fascicularis, in Peninsular Malaysia.Int. J. Primatol. 5: 17–29.CrossRefGoogle Scholar
  28. Kawai, M. 1965. On the system of social ranks in a natural troop of Japanese monkeys. I: Basic rank and dependent rank. In:Japanese Monkeys,Imanishi,K.;Altmann,S. A. (eds), Emory Univ. Press, Atlanta, pp. 66–86.Google Scholar
  29. Koyama, N.;Takahata, Y.;Huffman, M. A.;Norikoshi, K.;Suzuki, H. 1992. Reproductive parameters of female Japanese macaques: thirty years data from the Arashiyama Troops, Japan.Primates, 33: 33–47.CrossRefGoogle Scholar
  30. Kuester, J.;Paul, A.;Arnemann, J. 1995. Age-related and individual differences of reproductive success in male and female barbary macaques (Macaca sylvanus).Primates, 36: 461–476.CrossRefGoogle Scholar
  31. Ménard, N.;Vallet, D. 1996. Demography and ecology of barbary macaques (Macaca sylvanus) in two different habitats. In:Evolution and Ecology of Macaque Societies,Fa,J. E.;Lindburg,D. G. (eds.), Cambridge Univ. Press, Cambridge, pp. 106–131.Google Scholar
  32. Mori, A. 1979. Analysis of population changes by measurement of body weight in the Koshima troop of Japanese monkeys.Primates, 20: 371–397.CrossRefGoogle Scholar
  33. Mori, A.;Watanabe, K.;Yamaguchi, N. 1989. Longitudinal changes of dominance rank among the females of the Koshima group of Japanese monkeys.Primates, 30: 147–173.CrossRefGoogle Scholar
  34. Mori, A.;Yamaguchi, N.;Watanabe, K.;Shimizu, K. 1997. Sexual maturation of female Japanese macaques under poor nutritional conditions and food-enhanced perineal swelling in the Koshima troop.Int. J. Primatol., 18: 553–579.CrossRefGoogle Scholar
  35. van Noordwijk, M. A. 1985. Sexual behaviour of Sumatran long-tailed macaques (Macaca fascicularis).Z. Tiepsychol. 70: 277–296.CrossRefGoogle Scholar
  36. van Noordwijk, M. A.;van Schaik, C. P. 1985. Male migration and rank acquisition in wild long-tailed macaques (Macaca fascicularis).Anim. Behav. 33: 849–861.CrossRefGoogle Scholar
  37. van Noordwijk, M. A.;van Schaik, C. P. 1987. Competition among female long-tailed macaques,Macaca fascicularis.Anim. Behav., 35: 577–589.CrossRefGoogle Scholar
  38. van Noordwijk, M. A.;van Schaik, C. P. 1988. Male careers in Sumatran long-tailed macaques (Macaca fascicularis).Behaviour, 107: 24–43.CrossRefGoogle Scholar
  39. Oi, T. 1996. Sexual behaviour and mating system of the wild pig-tailed macaque in West Sumatra. In:Evolution and Ecology of Macaque Societies,Fa,J. E.;Lindburg,D. G. (eds), Cambridge Univ. Press, Cambridge, pp. 342–368.Google Scholar
  40. Packer, C.;Collins, D. A.;Sindimwo, A.;Goodall, J. 1995. Reproductive constraints on aggressive competition in female baboons.Nature, 373: 60–63.PubMedCrossRefGoogle Scholar
  41. Paul, A.;Kuester, J. 1990. Adaptive significance of sex ratio adjustment in semifree-ranging barbary macaques (Macaca sylvanus) at Salem.Behav. Ecol. Sociobiol., 30: 337–341.Google Scholar
  42. Paul, A.;Kuester, J. 1996. Differential reproduction in male and female barbary macaques. In:Evolution and Ecology of Macaque Societies,Fa,J. E.;Lindburg,D. G. (eds.), Cambridge Univ. Press, Cambridge, pp. 293–317.Google Scholar
  43. Paul, A.;Kuester, J.;Arnemann, J. 1992. Maternal rank affects reproductive success of male barbary macaques (Macaca sylvanus): evidence from DNA fingerprinting.Behav. Ecol. Sociobiol., 30: 337–341.Google Scholar
  44. Pusey, A.;Williams, J.;Goodall, J. 1997. The influence of dominance rank on the reproductive success of female chimpanzees.Science, 277: 828–831.PubMedCrossRefGoogle Scholar
  45. Robinson, J. G. 1981. Spatial structure in foraging groups of wedge-capped capuchin monkeysCebus nigrivittatus.Anim. Behav., 29: 1036–1056.CrossRefGoogle Scholar
  46. Robinson, J. G. 1988. Group size in wedge-capped capuchin monkeys,Cebus olivaceus, and the reproductive success of males and females.Behav. Ecol. Sociobiol. 23: 187–197.CrossRefGoogle Scholar
  47. Ron, T. 1996. Who is responsible for fission in a free-ranging troop of baboons?Ethology, 102: 128–133.CrossRefGoogle Scholar
  48. Ron, T.;Henzi, S. P.;Motro, U. 1996. Do female chacma baboons compete for safe spatial positions in a southern woodland habital?Behaviour, 133: 475–490.CrossRefGoogle Scholar
  49. De Ruiter, J. R.;van Hooff, J. A. R. A. M.;Scheffrahn, W. 1994. Social and genetic aspects of paternity in wild long-tailed macaques (Macaca fascicularis).Behaviour, 129: 203–224.CrossRefGoogle Scholar
  50. van Schaik, C. P. 1983. Why are diurnal primates living in groups?Behaviour, 87: 120–144.CrossRefGoogle Scholar
  51. van Schaik, C. P.. 1986. Phenological changes in a Sumatran rain forest.J. Trop. Ecol., 2: 327–347.CrossRefGoogle Scholar
  52. van Schaik, C. P.;Mirmanto, E. 1985. Spatial variation in structure and litterfall of a Sumatran rain forest.Biotropica, 17: 196–205.CrossRefGoogle Scholar
  53. van Schaik, C. P.;Netto, W. J.;van Hooff, J. A. R. A. M. 1989. Java-apen (Macaca fascicularis): sociale organisatie in het tropisch regenwoud en groepsbeheer in het laboratorium.Biotechniek, 28: 6–8.Google Scholar
  54. van Schaik, C. P.;van Noordwijk, M. A. 1985. Interannual variability in fruit abundance and reproductive seasonality in Sumatran long-tailed macaques (Macaca fascicularis).J. Zool. Lond., 206: 533–549.CrossRefGoogle Scholar
  55. van Schaik, C. P.;van, Noordwijk, M. A. 1988. Scramble and contest in feeding competition among female long-tailed macaques (Macaca fascicularis).Behaviour, 105: 77–98.CrossRefGoogle Scholar
  56. van Schaik, C. P.;van Noordwijk, M. A.;van Bragt, T.;Blankenstein, M. A. 1991. A pilot study of the social correlates of levels of urinary cortisol, prolactin, and testosterone in wild long-tailed macaques (Macaca fascicularis).Primates, 32: 345–356.CrossRefGoogle Scholar
  57. Silk, J. B. 1987.Social Behavior in Evolutionary Perspective. Chicago Univ. Press, Chicago.Google Scholar
  58. Silk, J. B. 1993. The evolution of social conflict among female primates. In:Primate Social Conflict,Mason,W. A.;Mendoza,S. P. (eds.), State Univ. of New York, New York, pp. 49–83.Google Scholar
  59. Sokal, R. R.;Rohlf, F. J. 1981.Biometry, W. H. Freeman, New York.Google Scholar
  60. Sterck, E. H. M.;Steenbeek, R. 1997. Female dominance relationships and food competition in the sympatric Thomas langur and long-tailed macaque.Behaviour, 134: 749–774.CrossRefGoogle Scholar
  61. Sterck, E. H. M.;Watts, D. P.;van Schaik, C. P. 1997. The evolution of female social relationships in nonhuman primates.Behav. Ecol. Sociobiol., 41:291–309.CrossRefGoogle Scholar
  62. Sugiyama, Y.;Ohsawa, H. 1982. Population dynamics of Japanese monkeys with special reference to the effect of artificial feeding.Folia Primatol., 39: 238–263.PubMedCrossRefGoogle Scholar
  63. Suzuki, S.;Noma, N.;Izawa, K. 1988. Inter-annual variation of reproductive parameters and fruit availability in two populations of Japanese macaques.Primates, 39: 313–324.Google Scholar
  64. de Waal, F. B. M. 1977. The organization of agonistic relations within two captive groups of Javamonkeys (Macaca fascicularis).Z. Tierpsychol., 44: 225–282.PubMedCrossRefGoogle Scholar
  65. de Waal, F. B. M. 1987. Dynamics of social relationships. In:Primate Societies,Smuts,B. B.;Cheney,D. L.;Seyfarth,R. M.;Wrangham,R. W.;Struhsaker,T. T. (eds.), Univ. of Chicago Press, Chicago, pp. 421–429.Google Scholar
  66. Walters, J. R.;Seyfarth, R. M. 1987. Conflict and cooperation. In:Primate Societies,Smuts,B. B.;Cheney,D. L.;Seyfarth,R. M.;Wrangham,R. W.;Struhsaker,T. T. (eds.), Univ. of Chicago Press, Chicago, pp. 306–317.Google Scholar
  67. Watanabe, K.;Mori, A.;Kawai, M. 1992. Characteristic features of the reproduction of Koshima monkeys,Macaca fuscata fuscata: a summary of thirty-four years of observation.Primates, 33: 1–32.CrossRefGoogle Scholar
  68. Whitten, P. L. 1983. Diet and dominance among female vervet monkeys (Cercopithecus aethiops).Amer. J. Primatol., 5: 139–159.CrossRefGoogle Scholar
  69. Wrangham, R. W. 1980. An ecological model of female-bonded primate groups.Behaviour, 75: 262–299.CrossRefGoogle Scholar

Copyright information

© Japan Monkey Centre 1999

Authors and Affiliations

  • Maria A. van Noordwijk
    • 1
  • Carcl P. van Schaik
    • 2
    • 3
  1. 1.DurhamUSA
  2. 2.Biological Anthropology and AnatomyDuke UniversityDurhamUSA
  3. 3.DurhamUSA

Personalised recommendations