, Volume 40, Issue 2, pp 353–364

Mitochondrial pseudogenes and phyletic relationships ofCebuella andCallithrix (Platyrrhini, primates)

  • Miguel Angelo Martins Moreira
  • Héctor N. Seuánez


Two cytochromeb pseudogenes were isolated from PCR amplified products ofCebuella pygmaea DNA. These sequences showed insertions and deletions when compared to paralogous mitochondrial sequence regions of several primates. Phylogenetic analyses indicated that an ancestral pseudogene originated sometime before the divergence ofCebuella andCallithrix and that this sequence was later duplicated some 5.6 million years ago. Parsimony and distance analyses indicated thatCebuella pygmaea andCallithrix species of theargentata group were more closely related to one another than any of them was toCallithrix species of thejacchus group, in agreement with previous analyses based on nuclear genes and karyotypic data. These findings also indicated thatCallithrix is a paraphyletic genus, in agreement with previous propositions thatCebuella should be included within the genusCallithrix.

Key Words

Callitrichinae Mitochondrial DNA Cytochromeb Pseudogenes Cebuella 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alves, G.;Canavez, F.;Seuánez, H.;Fanning, T. 1995. Recently amplified satellite DNA inCallithrix argentata (Primates, Platyrrhini).Chromosome Res., 3: 207–213.PubMedCrossRefGoogle Scholar
  2. Anderson, S.;Bankier, A. T.;Barrel, B. G.;de Bruijn, M. H. J.;Coulson, A. R.;Drouin, J.;Eperon, I. C.;Nierlich, D. P.;Roe, B. A.;Sanger, F.;Shereier, P. H.;Smith, A. J. H.;Staden, R.;Young, I. G. 1981. Sequence and organization of the human mitochondrial genome.Nature (London), 290: 457–465.CrossRefGoogle Scholar
  3. Arctander, P. 1995. Comparison of a mitochondrial gene and a corresponding nuclear pseudogene.Proc. R. Soc. Lond., B 262: 13–19.CrossRefGoogle Scholar
  4. Barroso, C. M. L.;Schneider, H.;Schneider, M. P. C.;Sampaio, I.;Harada M. L.;Czelusniak, J.;Goodman, M. 1997. Update on the phylogenetic systematics of New World monkeys: further DNA evidence for placing the pygmy marmoset (Cebuella) within the genusCallithrix.Int. J. Primatol., 18: 651–674.CrossRefGoogle Scholar
  5. Bibb, M. J.;van Etten, R. A.;Wright, C. T.;Walberg, M. W.;Clayton, D. A. 1981. Sequence and gene organization of mouse mitochondrial DNA.Cell, 26: 167–180.PubMedCrossRefGoogle Scholar
  6. Bremmer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction.Evolution, 42: 795–803.CrossRefGoogle Scholar
  7. Cabot, E. 1994.The Eyeball Sequence Editor (XESEE), Version 3.0. Dept. of Ecology and Evolution, Univ. of Chicago, Chicago.Google Scholar
  8. Canavez, F.;Alves, G.;Fanning, T. G.;Seuánez, H. N. 1996. Comparative karyology and evolution of AmazonianCallithrix (Platyrrhini, Primates).Chromosoma (Berlin), 104: 348–357.Google Scholar
  9. Collura, R. V.;Stewart, C. B. 1995. Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids.Nature (London), 378: 485–489.CrossRefGoogle Scholar
  10. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap.Evolution, 39: 783–791.CrossRefGoogle Scholar
  11. Felsenstein, J. 1993.Phylogenetic Inference Package (PHYLIP), Version 3.5c. Univ. of Washington, Seattle; Univ. Herbarium of the Univ. of California, Berkeley.Google Scholar
  12. Ford, S. M. 1986. Systematics of the New World monkeys. In:Comparative Primate Biology, Vol. 1,Swindler,D. R.;Erwin,J. (eds.), Alan R. Liss, New York, pp. 73–135.Google Scholar
  13. Fukuda, M.;Wakasugi, S.;Tsuzuki, T.;Nomiyama, H.;Shimada, K. 1985. Mitochondrial DNA-like sequences in the human nuclear genome: characterization and implications in the evolution of mitochondrial DNA.J. Molecular Biol., 186: 257–266.CrossRefGoogle Scholar
  14. Hershkovitz, P. 1977.Living New World Monkeys. The Univ. of Chicago Press, Chicago.Google Scholar
  15. Kay, R. F. 1990. The phyletic relationships of extant and fossil Pitheciinae (Platyrrhini, Anthropoidea).J. Human Evol., 19: 175–208.CrossRefGoogle Scholar
  16. Kay, R. F. 1994. “Giant” tamarin from the Miocene of Colombia.Amer. J. Phys. Anthropol., 95: 333–353.CrossRefGoogle Scholar
  17. Kocher, T. D.;Thomas, W. K.;Meyer, A.;Edwards, S. V.;Päabo, S.;Villablanca, F. X.;Wilson, A. C. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers.Proc. Natl. Acad. Sci. (USA), 86: 6196–6200.CrossRefGoogle Scholar
  18. Kumar, S.;Tamura, K.;Nei, M. 1993.Mega: Molecular Evolutionary Genetics Analysis, Version 1.02. The Pennsylvania State Univ., Univ. Park.Google Scholar
  19. Li, W. H.;Gojobori, T.;Nei, M. 1981. Pseudogenes as a paradigm of neutral evolution.Nature (London), 191: 237–239.CrossRefGoogle Scholar
  20. Lopez, J. V., Yukhi, N.;Masuda, R.;Modi, W.;O'Brien, S. J. 1994.Numt, a recent transfer and tandem amplification of the mitochondrial DNA to the nuclear genome of the domestic cat.J. Molecular Evol., 39: 174–190.Google Scholar
  21. Maddison, W. P.;Maddison, D. R. 1992.MacClade, Version 3.04. Sinauer, Sunderland, Massachusetts.Google Scholar
  22. Rosenberger, A. L. 1981. Systematics: the higher taxa. In:Ecology and Behavior of Neotropical Primates, Vol. 1,Coimbra-Filho,A. F.;Mittermeier,R. A. (eds.), Academia Brasileira de Ciências, Rio de Janeiro, pp. 9–27.Google Scholar
  23. Rosenberger, A. L. 1984. Fossil New World monkeys dispute the molecular clock.J. Human Evol., 13: 737–742.CrossRefGoogle Scholar
  24. Saiki, R. K.;Gelfand, D. H.;Stofell, S.;Scharf, S. J.;Higuchi, R.;Horn, G. T.;Mullis, K. B.;Erlich, H. A. 1988. Primer-direct enzymatic amplification of DNA with a thermostable DNA polymerase.Science, 239: 487–491.PubMedCrossRefGoogle Scholar
  25. Sambrook, J.;Fritsch, E. E.;Maniatis, T. 1989.Molecular Cloning: Laboratory Manual (2nd ed.). Cold Spring Harbor Lab. Press, Cold Spring Harbor.Google Scholar
  26. Schneider, H.;Sampaio, I.;Harada, M. L.;Barroso, C. M. L.;Schneider, M. P. C.;Czelusniak, J.;Goodmam, M. 1996. Molecular phylogeny of the New World monkeys (Platyrrhini, Primates) based on two unlinked nuclear genes: IRBP intron and ε-globin sequences.Amer. J. Phys. Anthropol., 100: 153–179.CrossRefGoogle Scholar
  27. Schneider, H.;Schneider, M. P. C.;Sampaio, I.;Harada, M. L.;Stanhope, M.;Czelusniak, J.;Goodman, M. 1993. Molecular phylogeny of the New World monkeys (Platyrrhini, Primates).Molecular Phylogenet. Evol., 2: 225–242.CrossRefGoogle Scholar
  28. Swofford, D. L. 1993.PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Smithsonian Institute, Washington, D. C.Google Scholar
  29. Tagliaro, C. H.;Schneider, M. P. C.;Schneider, H.;Sampaio, I. C.;Stanhope, M. J. 1997. Marmoset phylogenetics, conservation perspectives, and evolution of the mtDNA control region.Molecular Biol. Evol., 14: 674–684.Google Scholar
  30. van der Kuyl, A. C.;Kuiken, C. L.;Dekker, J. T.;Perizonius, W. R. K.;Goudsmit, J. 1995. Nuclear counterparts of the cytoplasmic mitochondrial 12S rDNA gene: a problem of ancient DNA and molecular phylogenies.J. Molecular Evol., 40: 652–657.CrossRefGoogle Scholar
  31. Zhang, D. X.;Hewitt, G. 1996a. Highly conserved nuclear copies of the mitochondrial control region in the desert locustSchistocerca gregaria: some implications for population studies.Molecular Ecol., 5: 295–300.CrossRefGoogle Scholar
  32. Zhang, D. X.;Hewitt, G. 1996b. Nuclear integrations: challenges for mitochondrial DNA markers.Trends in Ecol. Evol., 11: 247–251.CrossRefGoogle Scholar
  33. Zischler, H.;Geisert, H.;von Haeseler, A.;Pääbo, S. 1995. A nuclear “fossil” of the mitochondrial D-loop and the origin of modern humans.Nature (London), 378: 489–492.CrossRefGoogle Scholar

Copyright information

© Japan Monkey Centre 1999

Authors and Affiliations

  • Miguel Angelo Martins Moreira
    • 1
  • Héctor N. Seuánez
    • 1
    • 2
  1. 1.Genetics Section, Serviço de Pesquisa BásicaInstituto Nacional de CâncerRio de JaneiroBrazil
  2. 2.Department of GeneticsUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations