Theoretical and Mathematical Physics

, Volume 120, Issue 1, pp 834–839 | Cite as

New example of a nonlinear hyperbolic equation possessing integrals

  • A. V. Zhiber
  • V. V. Sokolov


We discover an important new case in the classical problem of the classification of nonlinear hyperbolic equations possessing integrals. In the general (least degenerate) case, in addition, we obtain a formula describing the splitting of the right-hand side of such equations with respect to the first derivatives.


Arbitrary Function Point Change Full Derivative Integrable Nonlinear Equation Liouville Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Darboux,Leçons sur la theorie general des surface, Vol. 2, Hermann, Paris (1915).Google Scholar
  2. 2.
    E. Goursat,Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes, Vols. 1, 2, Hermann, Paris (1896, 1898).Google Scholar
  3. 3.
    E. Vessiot,J. Math. Pure Appl.,18, 1–61 (1939).zbMATHMathSciNetGoogle Scholar
  4. 4.
    A. V. Zhiber,Russ. Acad. Sci. Izv. Math.,45, No. 1, 33–54 (1995).CrossRefMathSciNetGoogle Scholar
  5. 5.
    A. V. Zhiber, “Higher symmetries of the Liouville-type equations”, in:Proc. All-Russ. Conf. “Physics of Condensed Matter” (K. B. Sabitov, ed.) [in Russian], Vol. 1,Mathematical Methods in Physics, Sterlitamak Branch, Acad. Sci. Rep. of Bashkiria, SSPI (1997), pp. 54–57.Google Scholar
  6. 6.
    M. Yu. Zvyagin,Sov. Math. Dokl.,43, 30–34 (1991).zbMATHMathSciNetGoogle Scholar
  7. 7.
    A. B. Borisov and S. A. Zykov,Theor. Math. Phys.,115, 530–541 (1998).zbMATHMathSciNetGoogle Scholar
  8. 8.
    A. V. Zhiber and A. B. Shabat,Sov. Math. Dokl.,30, 23–26 (1984).zbMATHGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. V. Zhiber
    • 1
  • V. V. Sokolov
    • 2
  1. 1.Institute for MechanicsUfa Science Center, RASUfaRussia
  2. 2.Landau Institute for Theoretical Physics, RASChernogolovkaRussia

Personalised recommendations