Advertisement

Theoretical and Mathematical Physics

, Volume 119, Issue 1, pp 420–430 | Cite as

Equations of motion and conserved quantities in non-Abelian discrete integrable models

  • V. A. Verbus
  • A. P. Protogenov
Article

Abstract

Conserved quantities for the Hirota bilinear difference equation, which is satisfied by eigenvalues of the transfer matrix, are studied. The transfer-matrix eigenvalue combinations that are integrals of motion for discrete integrable models, which correspond to Ak−1 algebras and satisfy zero or quasi-periodic boundary conditions, are found. Discrete equations of motion for a non-Abelian generalization of the Liouville model and the discrete analogue of the Tsitseiko equation are obtained.

Keywords

Continuous Limit Discrete Equation Hirota Equation Lipan Liouville Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al. B. Zamolodchikov,Nucl. Phys.,342, 695 (1990).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    A. Klümper and P. Pearce,Physica A,183, 304 (1992).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    A. Kuniba, T. Nakanishi, and J. Suzuki,Int. J. Mod. Phys. A,9, 5215 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    F. Ravanini, A. Valleriani, and R. Tateo,Int. J. Mod. Phys. A,8, 1707 (1993).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    P. B. Wiegmann,Int. J. Mod. Phys. B,11, 75 (1997).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    A. Zabrodin, “Bethe ansatz and classical Hirota equations”, Preprint hep-th/9607162 (1996); “A survey of Hirota’s difference equations”, Preprint solv-int/9704001 (1997); “Discrete Hirota’s equation in quantum integrable models”, Preprint hep-th/9610039 (1996).Google Scholar
  7. 7.
    I. Krichever, P. Wiegmann, and A. Zabrodin, “Elliptic solutions to difference nonlinear equations and related many-body problems”, Preprint hep-th/9704090 (1997).Google Scholar
  8. 8.
    O. Lipan, P. Wiegmann, and A. Zabrodin, “Fusion rules for quantum transfer matrices as a dynamical system on Grassmann manifold”, Preprint solv-int/9704015 (1997).Google Scholar
  9. 9.
    Y. B. Suris,J. Phys. A 29, 451 (1996).zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    F. W. Nijhoff, O. Ragnisco and V. B. Kuznetsov,Commun. Math. Phys.,176, 681 (1996).zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    H. W. Capel and F. W. Nijhoff, “Integrable lattice equations”, in:Important Developments in soliton Theory (A. S. Fokas and V. E. Zakharov, eds.), Springer, Berlin (1993).Google Scholar
  12. 12.
    A. V. Zabrodin,Theor. Math. Phys.,113, 1347 (1997).MathSciNetGoogle Scholar
  13. 13.
    I. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin, “Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations”, Preprint hep-th/9604080 (1996).Google Scholar
  14. 14.
    I. G. Korepanov, “Vacuum curves, classical integrable systems in discrete space-time and statistical physics”, Preprint hep-th/9312197 (1993); “Algebraic integrable dynamical systems (2+1)-dimensional models in wholly discrete space-time, and inhomogeneous models in 2-dimensional statistical physics”, Preprint solv-int/9506003 (1995).Google Scholar
  15. 15.
    L. D. Faddeev, “How algebraic Bethe ansatz works for integrable model”, in:Quantum Symmetries (Les Houches Lectures, Session 64) (A. Connes, K. Gawedzki, and J. Zinn-Justin, eds.), North-Holland, Amsterdam (1998) p. 149; Preprint hep-th/9605187 (1996).Google Scholar
  16. 16.
    V. Bazhanov, A. Bobenko, and N. Reshetikhin,Commun. Math. Phys. 175, 377 (1996).zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    D. Bernard and A. LeClair,Commun. Math. Phys.,142, 99 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    A. P. Protogenov and V. A. Verbus,Mod. Phys. Lett. B,11, 283 (1997).CrossRefADSGoogle Scholar
  19. 19.
    A. Protogenov, “Haldane’s statistical interactions and universal properties of anyon systems”, Preprint IC/95/26, ICTP, Trieste (1995).Google Scholar
  20. 20.
    T. Fukui and N. Kawakami,Phys. Rev. B 51, 5239 (1995).CrossRefADSGoogle Scholar
  21. 21.
    F. D. M. Haldane,Phys. Rev. Lett.,67, 937 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    B. Enriquez and B. L. Feigin,Theor. Math. Phys.,103, 738 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    L. D. Faddeev and L. A. Takhtajan,The Hamiltonian Methods in the Theory of Solitons [in Russian] Nauka, Moscow (1986); English transl., Springer, Berlin (1987).zbMATHGoogle Scholar
  24. 24.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevsky,Theory of Solitons: The Inverse Scattering Method, [in Russian], Nauka, Moscow (1980); English transl. Plenum, New York (1984).zbMATHGoogle Scholar
  25. 25.
    A. V. Zabrodin,JETP Lett.,66, 653 (1997).CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    S. Saito and N. Saitoh,Phys. Lett. A,120, 1052 (1987);Math. Phys.,28, 322 (1987).CrossRefMathSciNetGoogle Scholar
  27. 27.
    R. Hirota,J. Phys. Soc. Japan,56, 4285 (1987).CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    R. Hirota,J. Phys. Soc. Japan,43, 2079 (1977).MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    L. Faddeev and A. Volkov,Lett. Math. Phys.,32, 125 (1994).zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    A. Volkov,Lett. Math. Phys.,39, 313 (1997); “Quantum lattice KdV equation”, Preprint hep-th/9509024 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    R. Jackiw and So-Young Pi,Progr. Theor. Phys. (Suppl.),107, 1 (1992).MathSciNetGoogle Scholar
  32. 32.
    A. Bobenko and W. Schief, “Discrete indefinite affine spheres,” Preprint SFB288. v. 263, Technische Universität Berlin (1997); “Affine spheres: discretization via duality relations”, Preprint SFB288. V. 297, Technische Universität, Berlin (1997).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. A. Verbus
    • 1
  • A. P. Protogenov
    • 2
  1. 1.Institute for Physics of MicrostructuresRASNizhnii NovgorodRussia
  2. 2.Institute for Applied PhysicsRASNizhnii NovgorodRussia

Personalised recommendations