Theoretical and Mathematical Physics

, Volume 118, Issue 3, pp 357–364 | Cite as

Bethe equations “on the wrong side of the equator”

  • G. P. Pron’ko
  • Yu. G. Stroganov


The T-Q Baxter equations for the XXX (XXZ) spin chain are analyzed. For each polynomial (trigonometric) solution of degree not exceeding N/2, which provides a solution of the Bethe ansatz equations, there exists a second linearly independent polynomial solution of degree greater than N/2. This second solution plays an essential role; in particular, all fusion relations follow from these two solutions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bethe,Z. Phys.,71, 205–226 (1931).MATHCrossRefADSGoogle Scholar
  2. 2.
    L. D. Faddeev, “How algebraic Bethe ansatz works for integrable model,” in:Les Houches Lectures, North-Holland, Amsterdam (1995), pp. 1–59; Preprint hep-th/9605187 (1996).Google Scholar
  3. 3.
    L. D. Faddeev and L. A. Takhtadzhyan,J. Sov. Math.,24, 241–267 (1984).MATHCrossRefGoogle Scholar
  4. 4.
    R. J. Baxter,Stud. Appl. Math. L, 51–69 (1971).Google Scholar
  5. 5.
    R. J. Baxter,Ann. Phys.,70, 193–228 (1972).MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    R. J. Baxter,Ann. Phys.,76, 1–24 (1973);76, 25–47 (1973);76, 48–71 (1973).CrossRefADSGoogle Scholar
  7. 7.
    V. V. Bazhanov, S. L. Lukyanov, and A. B. Zamolodchikov,Commun. Math. Phys.,177, 381–398 (1996);190, 247–278 (1997); “Integrable structure of conformal field theory III. The Yang-Baxter relation,” Preprint hep-th/9805008 (1998).MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    A. Antonov and B. Feigin, “Quantum group representations and Baxter equation”, Preprint hep-th/9603105 (1996).Google Scholar
  9. 9.
    I. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin,Commun. Math. Phys.,188, 267–304 (1997).MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    A. N. Kirillov and N. Yu. Reshetikhin,J. Phys. A,20, 1565–1585 (1987).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • G. P. Pron’ko
    • 1
    • 2
  • Yu. G. Stroganov
    • 1
  1. 1.Institute for High-Energy PhysicsProtvino, Moscow OblastRussia
  2. 2.International Solvay InstituteBrusselsBelgium

Personalised recommendations