Advertisement

Theoretical and Mathematical Physics

, Volume 118, Issue 3, pp 347–356 | Cite as

Geometry and multidimensional soliton equations

  • R. Myrzakulov
  • A. K. Danlybaeva
  • G. N. Nugmanova
Article

Abstract

The connection between the differential geometry of curves and (2+1)-dimensional integrable systems is established. The Zakharov equation, the modified Veselov-Novikov equation, the modified Kortewegde Vries equation, etc., are equivalent in the Lakshmanan sense to (2+1)-dimensional spin systems.

Keywords

Soliton Spin System Topological Charge Vries Equation Spin Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Doliwa and P. M. Santini,Phys. Lett. A,185, 373 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura,Phys. Rev. Lett.,19, 1095 (1967).zbMATHCrossRefADSGoogle Scholar
  3. 3.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii,Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl., S. P. Novikov, S. V. Manakov, L. P. Pitaevsky, and V. E. Zakharov, Plenum, New York (1984).zbMATHGoogle Scholar
  4. 4.
    M. J. Ablowitz and P. A. Clarkson,Solitons, Nonlinear Evolution Equations, and Inverse Scattering, Cambridge Univ. Press, Cambridge (1991).zbMATHGoogle Scholar
  5. 5.
    H. Hasimoto,J. Fluid Mech.,51, 477 (1972).zbMATHCrossRefADSGoogle Scholar
  6. 6.
    G. L. Lamb,J. Math. Phys.,18, 1654 (1977).zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    M. Lakshmanan,Phys. Lett. A,61, 53 (1977);J. Math. Phys.,20, 1667 (1979).CrossRefADSGoogle Scholar
  8. 8.
    R. Myrzakulov, “On some integrable and nonintegrable soliton equations of magnets,” Preprint, High-Energy Physics Institute, Alma-Ata (1987).Google Scholar
  9. 9.
    V. E. Zakharov and L. A. Takhtadzhyan,Theor. Math. Phys.,38, 17 (1979).CrossRefMathSciNetGoogle Scholar
  10. 10.
    K. Nakayama, H. Segur, and M. Wadati,Phys. Rev. Lett.,69, 2603 (1992).zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A. Sym, “Soliton surfaces and their applications”, in:Geometric Aspects of the Einstein Equations and Integrable Systems (Lect. Notes Phys., Vol. 239) (R. Martini, ed.), Springer, New York (1985), p. 154.Google Scholar
  12. 12.
    A. I. Bobenko,Math. Annal.,290, 207 (1990).MathSciNetGoogle Scholar
  13. 13.
    R. Balakrishnan, A. R. Bishop, and R. Dandoloff,Phys. Rev. B,47, 3108 (1993).CrossRefADSGoogle Scholar
  14. 14.
    B. G. Konopelchenko,Solitons in Multidimensions, World Scientific, Singapore (1993).zbMATHGoogle Scholar
  15. 15.
    B. G. Konopelchenko, “Multidimensional integrable systems and dynamics of surfaces in space,” Preprint, Acad. Sinica, Taipei (1993).Google Scholar
  16. 16.
    I. A. Taimanov,Trans. Am. Math. Soc. Ser. 2,179, 133 (1997).MathSciNetGoogle Scholar
  17. 17.
    R. Myrzakulov, “Soliton equations in 2+1 dimensions and differential geometry of curves/surfaces,” Preprint CNLP-1994-02, Center for Nonlinear Problems, Alma-Ata (1994).Google Scholar
  18. 18.
    R. Myrzakulov, “Integrable geometry and soliton equations in 2+1 dimensions,” Preprint CNLP-1994-06, Center for Nonlinear Problems, Alma-Ata (1994).Google Scholar
  19. 19.
    R. Myrzakulov, S. Vijayalarshmi, G. N. Nugmanova, and M. Lakshmanan,Phys. Lett. A,233, 391 (1997).zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    R. Myrzakulov, S. Vijayalakshmi, R. N. Syzdykova, and M. Lakshmanan,J. Math. Phys.,39, 2122 (1998).zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    M. Lakshmanan, R. Myrzakulov, S. Vijayalakshmi, and A. K. Danlybaeva,J. Math. Phys.,39, 3765 (1998).zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    L. V. Bogdanov,Theor. Math. Phys.,70, 219 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    G. N. Nugmanova, “The Myrzakulov equations: the gauge equivalent counterparts and soliton solutions,” Preprint, Kazakhstan State Univ., Alma-Ata (1992).Google Scholar
  24. 24.
    V. E. Zakharov, “Inverse scattering problem,” in:Solitons (R. K. Bullough and P. J. Caudrey, eds.), Springer, Berlin (1980), p. 270.Google Scholar
  25. 25.
    I. A. B. Strachan,J. Math. Phys.,34, 243 (1993).zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    O. I. Bogoyavlenskii,Breaking Solitons [in Russian], Nauka, Moscow (1991).Google Scholar
  27. 27.
    R. Myrzakulov, G. N. Nugmanova, and R. N. Syzdykova,J. Phys. A,31, 9535 (1998).zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • R. Myrzakulov
    • 1
  • A. K. Danlybaeva
    • 1
  • G. N. Nugmanova
    • 1
  1. 1.Physicotechnical InstituteMinistry of Science and Academy of Sciences of KazakhstanAlma-AtaKazakhstan

Personalised recommendations