Theoretical and Mathematical Physics

, Volume 120, Issue 3, pp 1245–1259 | Cite as

A quantum Teichmüller space

  • V. V. Fock
  • L. O. Chekhov


We explicitly describe a noncommutative deformation of the *-algebra of functions on the Teichmüller space of Riemann surfaces with holes that is equivariant with respect to the action of the mapping class group.


Modulus Space Simplicial Complex Conformal Block Homotopy Class Poisson Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Verlinde and E. Verlinde, “Conformal field theory and geometric quantization,” in:Superstrings 1989 (Trieste, 1989) (M. Green et al., eds.), World Scientific, River Edge, NJ (1990), pp. 422–449.Google Scholar
  2. 2.
    E. Witten, “The central charge in three dimensions,” in:Physics and Mathematics of Strings (L. Brink, D. Friedan and A. M. Polyakov, eds.), World Scientific, Teaneck, NJ (1990), pp. 530–559.Google Scholar
  3. 3.
    S. Carlip,Quantum Gravity in 2+1 Dimensions, Cambridge Univ. Press, Cambridge (1998).zbMATHGoogle Scholar
  4. 4.
    L. D. Faddeev and R. M. Kashaev,Mod. Phys. Lett. A,9, 427–434 (1994); “Quantum dilogarithm,” Preprint hep-th/9310070 (1993).zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    R. M. Kashaev,Lett. Math. Phys.,43, No. 2, 105–115 (1998); “Quantization of Teichmüller spaces and the quantum dilogarithm,” Preprint q-alg/9706018 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    O. Ya. Viro, “Lectures on combinatorial presentations of manifolds,” in:Differential Geometry and Topology (Alghero, 1992) (R. Caddeo and F. Tricerri, eds.), World Scientific, River Edge, NJ (1993), pp. 244–264.Google Scholar
  7. 7.
    K. Strebel,Quadratic Differentials, Springer, Berlin (1984).zbMATHGoogle Scholar
  8. 8.
    R. C. Penner,Commun. Math. Phys.,113, 299 (1988).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    V. V. Fock, “Dual Teichmüller spaces,” Preprint, MPIM, Bonn (1997); Preprint hep-th/9702018 (1997).Google Scholar
  10. 10.
    W. M. Goldman,Adv. Math.,54, 200–225 (1984).zbMATHCrossRefGoogle Scholar
  11. 11.
    G. Lion and M. Vergne,The Weil Representation, Maslov Index, and Theta Series (Progress in Mathematics, Vol. 6), Birkhäuser, Boston, Mass. (1980).zbMATHGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • V. V. Fock
    • 1
  • L. O. Chekhov
    • 2
  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations