Advertisement

Theoretical and Mathematical Physics

, Volume 116, Issue 3, pp 1050–1062 | Cite as

A new algebra in the stochastic approximation for the model of a particle interacting with a quantum field

  • L. Accardi
  • I. V. Volovich
  • S. V. Kozyrev
Article
  • 30 Downloads

Abstract

When the stochastic approximation is used to calculate correlation functions in the model of a particle interacting with a quantum field, a new algebra with temperature-dependent commutation relations appears. This algebra generalizes the free (Boltzmann) algebra.

Keywords

Correlation Function Phase Factor Stochastic Approximation Stochastic Limit Relativistic Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bogoliubov,Ukr. Mat. Zh.,2, No. 2, 3 (1950).MathSciNetGoogle Scholar
  2. 2.
    H. Fröhlich,Adv. Phys.,3, 325 (1954).CrossRefADSGoogle Scholar
  3. 3.
    S. S. Schweber,An Introduction to Relativistic Quantum Field Theory, Row, Peterson and Co., Evanston, Ill. (1961).Google Scholar
  4. 4.
    R. P. Feynman,Statistical Mechanics, Benjamin, Reading, Mass. (1972).Google Scholar
  5. 5.
    L. Accardi, A. Frigerio, and Y. G. Lu,Commun. Math. Phys.,131, 537 (1990).CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    L. Accardi, S. Kozyrev, and I. V. Volovich,Phys. Rev. A,56, 375 (1997).CrossRefGoogle Scholar
  7. 7.
    L. Accardi and Y. G. Lu,Commun. Math. Phys.,180, No. 3, 605 (1996).CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    M. Skeide, “Hilbert modules in quantum electrodynamics and quantum probability,” Preprint, Heidelberg Univ., Heidelberg (1996).Google Scholar
  9. 9.
    J. Gough,J. Phys. A,149, 2375 (1997).Google Scholar
  10. 10.
    J. Cuntz,Commun. Math. Phys.,57, 173 (1977).CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    D. E. Evans,Publ. RIMS Kyoto Univ.,16, 915 (1980).CrossRefzbMATHGoogle Scholar
  12. 12.
    H. Araki and D. E. Evans,J. Operat. Theory,23, 326 (1981).Google Scholar
  13. 13.
    D. Voiculescu, K. J. Dykema, and A. Nica,Free Random Variables (CRM Monograph Series), Vol. 1 Amer. Math. Soc., New York (1992).Google Scholar
  14. 14.
    B. Kummerer and R. Speicher,J. Funct. Anal.,103, 372 (1992).CrossRefMathSciNetGoogle Scholar
  15. 15.
    O. Bratteli, P. E. T. Jorgensen, A. Kishimoto, and R. F. Werner, “Pure states onO d,” func-an/9711004.Google Scholar
  16. 16.
    I. Ya. Aref'eva and I. V. Volovich,Nucl. Phys. B,462, 600 (1996).CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • L. Accardi
    • 1
  • I. V. Volovich
    • 2
  • S. V. Kozyrev
    • 3
  1. 1.Centro Vito VolterraUniversita di Roma 2 di Tor VergataItaly
  2. 2.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Semenov Institute for Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations