Advertisement

Theoretical and Mathematical Physics

, Volume 114, Issue 2, pp 127–183 | Cite as

Group theory approach to the τ-function and its quantization

  • A. D. Mironov
Article

Abstract

This is a review of generalizations of the τ-function and integrable hierarchies and of their group theory interpretations, which admits an immediate quantization procedure. Different group theory structures related to the integrable system, as well as their quantum deformations, are discussed.

Keywords

Fundamental Representation Verma Module Toda Chain Integrable Hierarchy Toda Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Marshakov, “Exact nonperturbative solutions of quantum theory and integrable systems,” Doctoral thesis, P. N. Lebedev Physical Institute, Moscow (1997).Google Scholar
  2. 2.
    A. Mironov. “τ-Functions and matrix models.” Doctoral thesis, P. N. Lebedev Physical Institute, Moscow (1997).Google Scholar
  3. 3.
    A. B. Zamolodchikov,JETP Lett.,46, 160 (1987).ADSMathSciNetGoogle Scholar
  4. 4.
    B. A. Kuperschmidt and P. Mathieu,Phys. Lett. B,227, 245 (1989).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    T. Eguchi and S. K. Yang,Phys. Lett. B,244, 373 (1989).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    A. B. Zamolodchikov,Adv. Studies in Pure Math.,19, 641 (1989).MathSciNetGoogle Scholar
  7. 7.
    R. Sasaki and I. Yamanaka,Adv. Studies in Pure Math.,16, 271 (1988).MathSciNetGoogle Scholar
  8. 8.
    A. Morozov,Usp. Fiz. Nauk,162, No. 8, 84 (1992).CrossRefGoogle Scholar
  9. 9.
    V. Knizhnik,Usp. Fiz. Nauk,159, No. 3, 401 (1989).MathSciNetGoogle Scholar
  10. 10.
    S. Saito,Phys. Rev. Lett.,59, 1798 (1987).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    S. Saito,Phys. Rev. D. 36, 1819 (1987).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A. Morozov,Phys. Lett. B. 196, 325 (1987).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    A. R. Its, A. G. Izergin, V. E. Korepin, and N. A. Slavnov,Int. J. Mod. Phys. B,4, 1003 (1990).CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    M. Jimbo, T. Miwa, and M. Sato, “Holonomic Quantum Fields, I–V.”Publ. RIMS Kyoto Univ.,14, 223 (1978);15, 201, 577, 871, 1531 (1979).MathSciNetGoogle Scholar
  15. 15.
    D. Bernard and A. Le Clair, “Differential equations for sine-Gordon correlation functions at the free fermion point,” Preprint CLNS 94/1276, SPhT-94-021; hep-th/9402144.Google Scholar
  16. 16.
    A. G. Izergin, D. A. Coker, and V. E. Korepin,J. Phys.: Math. Gen. A,25, 4315 (1992).CrossRefADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    A. Morozov,Usp. Fiz. Nauk,164, No. 1, 3 (1994).CrossRefGoogle Scholar
  18. 18.
    A. Marshakov,Int. J. Mod. Phys. A,8, 3831 (1993).CrossRefADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    A. Mironov,Int. J. Mod. Phys. A,9, 4355 (1994).CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    N. Seiberg and E. Witten,Nucl. Phys. B,426, 19 (1994).CrossRefADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    N. Seiberg and E. Witten,Nucl. Phys. B,431, 484 (1994).CrossRefADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov,Phys. Lett. B,355, 466 (1995).CrossRefADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    A. Mironov, “WDVV equations in Seiberg-Witten theory and associative algebras,” hep-th/9704205.Google Scholar
  24. 24.
    A. Gorsky, S. Gukov, and A. Mironov, “MultiscaleN=2 SUSY field theories, integrable systems and their stringy/brane origin,” hep-th/9707120.Google Scholar
  25. 25.
    L. A. Takhtajan (Takhtadzhyan) and L. D. Faddeev,Usp. Mat. Nauk,34, 13 (1979).Google Scholar
  26. 26.
    N. Yu. Reshetikhin, L. A. Takhtajan (Takhtadzhyan), and L. D. Faddeev,Algebra Anal.,1, 178 (1989).MathSciNetGoogle Scholar
  27. 27.
    V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin,Quantum Inverse Scattering Method and Correlation Functions [in Russian], Nauka, Moscow (1992); English translation of previous edition: Cambridge Univ., Cambridge (1989).Google Scholar
  28. 28.
    R. J. Baxter,Exactly Solved Models in Statistical Mechanics, Acad. Press, London-New York (1989).zbMATHGoogle Scholar
  29. 29.
    L. D. Faddeev, “Integrable models in 1+1-dimensional quantum field theory,” in:Les Houches Lectures 1982, Elsevier, Amsterdam (1984), pp. 563–608.Google Scholar
  30. 30.
    E. Sklyanin, “Quantum inverse scattering method. Selected topics,” in:Quantum Group and Quantum Integrable Systems (Nankai Lectures in Mathematical Physics) (Mo-Lin Ge, ed.), World Scientific, Singapore (1992), p. 63–97.Google Scholar
  31. 31.
    S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov,Int. J. Mod. Phys. A,10, 2015 (1995).CrossRefADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    K. Wilson,Phys. Rev. D,10, 2445 (1974).CrossRefADSGoogle Scholar
  33. 33.
    G. Weight, “On operator constructions in bosonic Liouville quantum gravity,” in:Proceedings of the 28th International Symposium Ahrenshoop, Wendisch-Rietz, Germany, September 1993, DESY, Hamburg (1994).Google Scholar
  34. 34.
    A. Mironov, A. Morozov, and L. Vinet,Theor. Math. Phys.,100, 890 (1994).CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, and A. Morozov,Int. J. Mod. Phys. A,10, 2589 (1995).CrossRefADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    A. Mironov,CRM Proc. Lect. Notes,9, 219 (1996).MathSciNetGoogle Scholar
  37. 37.
    S. Kharchev, A. Mironov, and A. Morozov, “τ-Functions: evolution and determinant representations,” in:Proceedings of the 28th International Symposium Ahrenshoop, Wendisch-Rietz, Germany, September 1993, DESY, Hamburg (1994), p. 80.Google Scholar
  38. 38.
    S. Kharchev, A. Mironov, and A. Morozov,Theor. Math. Phys.,104, 866 (1995).CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    A. Gerasimov, S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and M. Olshanetsky, “Liouville-type models in the group theory framework. I. Finite-dimensional algebras,” Preprint FIAN/TD-18/95, ITEP M4/TH-7/95; hep-th/9601161.Google Scholar
  40. 40.
    A. Mironov, “Group theory structures underlying integrable systems,” Preprint FIAN/TD-12/96, ITEP/TH-24/96; hep-th/9607123, to appear inProc. 2nd International A. D. Sakharov Conference.Google Scholar
  41. 41.
    M. Olshanetsky and A. Perelomov,Invent. Math.,54, 261 (1979).CrossRefADSMathSciNetzbMATHGoogle Scholar
  42. 42.
    B. Kostant,Adv. Math.,34, 195 (1979).CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    M. A. Olshanetskii and A. M. Perelomov,Theor. Math. Phys.,45, 843 (1980).CrossRefMathSciNetGoogle Scholar
  44. 44.
    N. Hurt,Geometric Quantization in Action, Riedel, Dordrecht-Boston-London (1983).zbMATHGoogle Scholar
  45. 45.
    H. P. B. Jacquet,Bull. Soc. Math. France,95, 243 (1967).MathSciNetzbMATHGoogle Scholar
  46. 46.
    G. Schiffmann,Bull. Soc. Math. France,99, 3 (1971).MathSciNetzbMATHGoogle Scholar
  47. 47.
    B. Kostant,Invent. Math.,48, 101 (1978).CrossRefADSMathSciNetzbMATHGoogle Scholar
  48. 48.
    M. Hashizume,Hiroshima Math. J.,12, 259 (1982).MathSciNetzbMATHGoogle Scholar
  49. 49.
    S. G. Gindikin and F. I. Karpelevich,Dokl. Akad. Nauk SSSR,145, 252 (1962).MathSciNetGoogle Scholar
  50. 50.
    S. G. Gindikin and F. I. Karpelevich,Izv. Akad. Nauk SSSR, Ser. Mat.,30, 1147 (1966).MathSciNetzbMATHGoogle Scholar
  51. 51.
    M. Semenov-Tian-Shansky, “Quantization of the open Toda chains,” in:Modern Problems in Mathematics, Vol. 16. VINITI, Moscow (1987), p. 194.Google Scholar
  52. 52.
    A. Gerasimov, A. Marshakov, A. Morozov, M. Olshanetsky, and S. Shatashvili,Int. J. Mod. Phys. A. 5, 2495 (1990).CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    A. Zamolodchikov and Al. Zamolodchikov. “Structure constants and conformal bootstrap in Liouville field theory.” hep-th/9506136.Google Scholar
  54. 54.
    H. Dorn and H.-J. Otto,Phys. Lett. B,291, 39 (1992).CrossRefADSMathSciNetGoogle Scholar
  55. 55.
    H. Dorn and H.-J. Otto,Nucl. Phys. B,429, 375 (1994).CrossRefADSMathSciNetzbMATHGoogle Scholar
  56. 56.
    M. Kashiwara and T. Miwa,Proc. Japan Acad. A. 57, 342 (1981).MathSciNetzbMATHGoogle Scholar
  57. 57.
    E. Date, M. Kashiwara, and T. Miwa,Proc. Japan Acad. A,57, 387 (1981).MathSciNetzbMATHGoogle Scholar
  58. 58.
    E. Date, M. Jimbo, M. Kashiwara, and T. Miwa,J. Phys. Soc. Japan,50, 3806 (1981).CrossRefMathSciNetzbMATHADSGoogle Scholar
  59. 59.
    E. Date, M. Kashiwara, and T. Miwa,Physica D,4, 343 (1982).CrossRefADSMathSciNetzbMATHGoogle Scholar
  60. 60.
    E. Date, M. Jimbo, M. Kashiwara, and T. Miwa,Publ. RIMS Kyoto Univ.,18, 1111 (1983).MathSciNetGoogle Scholar
  61. 61.
    E. Date, M. Jimbo, M. Kashiwara, and T. Miwa,J. Phys. Soc. Japan,50, 3813 (1981).CrossRefMathSciNetzbMATHADSGoogle Scholar
  62. 62.
    E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations,” in:Proc. RIMS Symp. Nonlinear Integrable Systems—Classical Theory and Quantum Theory (M. Jimbo and T. Miwa, eds.), World Scientific, Singapore (1983), p. 39.Google Scholar
  63. 63.
    M. Jimbo and T. Miwa,Publ. RIMS Kyoto Univ.,19, 943 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    K. Ueno and K. Takasaki,Adv. Studies in Pure Math.,4, 1 (1984).MathSciNetGoogle Scholar
  65. 65.
    S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov,Nucl. Phys. B,397, 339 (1993).CrossRefADSMathSciNetGoogle Scholar
  66. 66.
    M. Sato,RIMS Kokyuroku,439, 30 (1981).Google Scholar
  67. 67.
    I. M. Krichever,Funct. Anal. Appl.,11, 12 (1977).CrossRefzbMATHGoogle Scholar
  68. 68.
    I. M. Krichever,Russ. Math. Surv.,32, 185 (1977).CrossRefzbMATHGoogle Scholar
  69. 69.
    G. Segal and G. Wilson,Publ. IHES,61, 5 (1985).MathSciNetzbMATHGoogle Scholar
  70. 70.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevsky,Theory of Solitons. The Inverse Scattering Method, Plenum, New York (1984).Google Scholar
  71. 71.
    V. Kač and A. S. Schwarz,Phys. Lett. B,257, 329 (1991).CrossRefADSMathSciNetGoogle Scholar
  72. 72.
    S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and A. Zabrodin,Nucl. Phys. B,380, 181 (1992).CrossRefADSMathSciNetGoogle Scholar
  73. 73.
    S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, and A. Zabrodin,Nucl. Phys. B,366, 569 (1991).CrossRefADSMathSciNetGoogle Scholar
  74. 74.
    P. J. Harsen and D. J. Kaup,J. Phys. Soc. Japan,54, 4126 (1985).CrossRefADSMathSciNetGoogle Scholar
  75. 75.
    M. A. Olshanetsky and A. M. Perelomov,Phys. Rep.,71, 313 (1981).CrossRefADSMathSciNetGoogle Scholar
  76. 76.
    M. Olshanetsky and A. Perelomov,Phys. Rep.,94, 313 (1983).CrossRefADSMathSciNetGoogle Scholar
  77. 77.
    O. I. Bogoyavlensky,Commun. Math. Phys.,51, 201 (1976).CrossRefADSMathSciNetGoogle Scholar
  78. 78.
    R. Hirota,J. Phys. Soc. Japan,57, 4285 (1987).MathSciNetADSGoogle Scholar
  79. 79.
    R. Hirota, Y. Ohta, and J. Satsuma,Prog. Theor. Phys. Suppl.,94, 59 (1988).ADSMathSciNetGoogle Scholar
  80. 80.
    A. Leznov and M. Saveliev,Physica D,3, 62 (1981).CrossRefADSzbMATHGoogle Scholar
  81. 81.
    A. N. Leznov and M. V. Saveliev,Group Theory Methods for Integrating Nonlinear Dynamic Systems [in Russian], Nauka, Moscow (1985); A. N. Leznov and M. V. Savel'ev (Saveliev),Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems, Brikhäuser, Basel (1992).Google Scholar
  82. 82.
    O. Babelon,Commun. Math. Phys.,139, 619 (1991).CrossRefADSMathSciNetzbMATHGoogle Scholar
  83. 83.
    O. Babelon,Phys. Lett. B,215, 523 (1988).CrossRefADSMathSciNetGoogle Scholar
  84. 84.
    J.-L. Gervais,Nucl. Phys. B,391, 287 (1993).CrossRefADSMathSciNetGoogle Scholar
  85. 85.
    J.-L. Gervais and J. Schnittger,Nucl. Phys. B. 431, 273 (1994).CrossRefADSMathSciNetzbMATHGoogle Scholar
  86. 86.
    J. Schnittger,Theory. Math. Phys.,104, 892 (1995).CrossRefMathSciNetzbMATHGoogle Scholar
  87. 87.
    I. Frenkel and N. Reshetikhin,Commun. Math. Phys.,146, 1 (1992).CrossRefADSMathSciNetzbMATHGoogle Scholar
  88. 88.
    M. Jimbo and T. Miwa, Preprint RIMS-981, Kyoto Univ., Kyoto (1994).Google Scholar
  89. 89.
    C. Chari and A. Pressley,A Guide to Quantum Groups, Cambridge Univ., Cambridge (1994).zbMATHGoogle Scholar
  90. 90.
    C. Fronsdal and A. Galindo, Preprint UCLA/93/TEP/2 (1993).Google Scholar
  91. 91.
    A. Morozov and L. Vinet, “Free-field representation of a group element for simple quantum groups,” Preprint ITEP-M3/94, CRM-2202; hep-th/9409093.Google Scholar
  92. 92.
    D. P. Zhelobenko,Compact Lie Groups and their Representations [in Russian], Nauka, Moscow (1970).zbMATHGoogle Scholar
  93. 93.
    L. L. Waksman and Ya. S. Soibelman,Funkts. Anal. Prilozhen.,23, 1 (1988).Google Scholar
  94. 94.
    S. Levendorskii and Ya. Soibelman,Commun. Math. Phys.,139, 141 (1991).CrossRefADSMathSciNetGoogle Scholar
  95. 95.
    Y. Soibelman,Int. Math. Research Notices, No. 6, 151 (1993).CrossRefMathSciNetGoogle Scholar
  96. 96.
    K. Kajiwara and J. Satsuma,J. Phys. Soc. Japan,60, 3986 (1991).CrossRefMathSciNetADSGoogle Scholar
  97. 97.
    K. Kajiwara, Y. Ohta, and J. Satsuma, “q-Discrete Toda molecule equation,” solv-int/9304001.Google Scholar
  98. 98.
    M. Rosso,Commun. Math. Phys.,117, 581 (1988).CrossRefADSMathSciNetzbMATHGoogle Scholar
  99. 99.
    A. M. Perelomov,Integrable Systems of Classical Mechanics and Lie Algebras, Birkhäuser, Basel-Boston-Berlin (1990).Google Scholar
  100. 100.
    L. D. Faddeev and L. A. Takhtadzhyan.The Hamiltonian Methods in the Theory of Solitons, Springer, Berlin-Heidelberg New York (1987).zbMATHGoogle Scholar
  101. 101.
    M. Olshanetsky and V. Rogov,J. Phys.: Math. Gen.,27, 4669 (1994).CrossRefADSMathSciNetzbMATHGoogle Scholar
  102. 102.
    I. M. Gel'fand, M. I. Graev, and L. I. Pyatetskii-Shapiro,Representation Theory and Automorphic Functions, Saunders, Philadelphia (1969).Google Scholar
  103. 103.
    I. S. Gradshtein and I. M. Ryzhik,Tables of Integrals, Series, and Products [in Russian], Nauka, Moscow (1963); English transl.: Acad. Press, New York (1969).Google Scholar
  104. 104.
    Harish-Chandra,Amer. J. Math.,80, 241, 553 (1958).CrossRefMathSciNetGoogle Scholar
  105. 105.
    D. Mumford,Tata Lectures on Theta, Vols. I, II, Birkhäuser, Boston-Basel-Stuttgart (1983, 1984).zbMATHGoogle Scholar
  106. 106.
    H. Awata, M. Noumi, and S. Odake, “Heisenberg realization forU q (SL(n)) on the flag manifold,” Preprint YITP/K-1016; hep-th/9306010 (1993).Google Scholar
  107. 107.
    P. Griffits and F. Adams,Topics in Algebraic Geometry and Analytic Geometry, Princeton Univ., Princeton (1974).Google Scholar
  108. 108.
    V. G. Drinfeld,Zap. Nauchn. Sem. LOMI,155, 19 (1986).Google Scholar
  109. 109.
    M. Jimbo,Lett. Math. Phys.,10, 63 (1985).CrossRefMathSciNetzbMATHADSGoogle Scholar
  110. 110.
    N. Wallach,Harmonic Analysis in Homogenous Spaces, Dekker, New York (1973).Google Scholar
  111. 111.
    S. Helgason,Groups and Geometrical Analysis, Acad. Press, New York (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • A. D. Mironov
    • 1
    • 2
  1. 1.Theory Department. P. N. Lebedev Institute of PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations