Calcified Tissue International

, Volume 42, Issue 3, pp 145–156

Vital biomechanics: Proposed general concepts for skeletal adaptations to mechanical usage

  • H. M. Frost


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander RM (1984) Optimum strengths for bones liable to fatigue and accidental fracture. J Theor Biol 109:621–626PubMedCrossRefGoogle Scholar
  2. 2.
    Brash JC (1934) Some problems in the growth and developmental mechanics of bone. Edinburgh Med JGoogle Scholar
  3. 3.
    Cowin SC (1984) Mechanical modeling of the stress adaptation process in bone. Calcif Tissue Int (Suppl) 36:S98-S103PubMedCrossRefGoogle Scholar
  4. 4.
    Currey JD (1984) The mechanical adaptations of bones. Princeton University Press, Princeton.Google Scholar
  5. 5.
    Dempster WT, Liddicoat RT (1952) Compact bone as an isotropic material. Am J Anat 91:331–362, 41:305–318, 363–387PubMedCrossRefGoogle Scholar
  6. 6.
    Enlow DH (1963) Principles of bone remodeling. Charles C. Thomas, SpringfieldGoogle Scholar
  7. 7.
    Evans FG (1957) Stress and strain in bones. Charles C. Thomas, SpringfieldGoogle Scholar
  8. 8.
    Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer-Verlag, BerlinGoogle Scholar
  9. 9.
    Putschar WGJ (1960) General pathology of the musculoskeletal system. In: Handbuch der Allgemeinen Pathologie, Springer-Verlag, BerlinGoogle Scholar
  10. 10.
    Rubin CT (1984) Skeletal strain and the functional significance of bone architecture. Calcif Tissue Int 36:S11-S18PubMedCrossRefGoogle Scholar
  11. 11.
    Weinmann JP, Sicher H (1955) Bone and bones, 2nd ed. CV Mosby, St. LouisGoogle Scholar
  12. 12.
    Bouvier M (1985) Application of in vivo bone strain measurement techniques to problems of skeletal adaptations. Yearbook Phys Anthrop, 237–248Google Scholar
  13. 13.
    Lanyon LE (1984) Functional strain as a determinant for bone remodeling. Calcif Tissue Int (suppl) 36:S56-S61PubMedCrossRefGoogle Scholar
  14. 14.
    Reilly DT, Burstein AM (1974) The mechanical properties of cortical bone. J Bone Joint Surg 56A:1001–1022PubMedGoogle Scholar
  15. 15.
    Frost HM (1964) The laws of bone structure. Charles C. Thomas, SpringfieldGoogle Scholar
  16. 16.
    Frost HM (1963) An introduction to biomechanics. Charles C. Thomas, SpringfieldGoogle Scholar
  17. 17.
    Epker BN, Frost HM (1965) Correlation of patterns of bone resorption and formation with the physical behavior of loaded bone. J Dent Res 44:33–42PubMedGoogle Scholar
  18. 18.
    Frost HM (1979) A chondral modeling theory. Calcif Tissue Int 28:181–200PubMedCrossRefGoogle Scholar
  19. 19.
    Frost HM (1983) Mechanical determinants of bone modeling. J Met Bone Dis Rel Res 4:217–230CrossRefGoogle Scholar
  20. 20.
    Frost HM (1986) Intermediary organization of the skeleton. Vols I, II. CRC Press, Boca RatonGoogle Scholar
  21. 21.
    Carter ER (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int (suppl) 36:S19-S24PubMedCrossRefGoogle Scholar
  22. 22.
    Jee WSS (1983) The skeletal tissues In: Weiss W. L. (ed) Histology, 5th ed. Elsevier-North Holland, New York, pp 200–255Google Scholar
  23. 23.
    Frost HM (in press) The mechanostat: a proposed pathogenetic mechanism of osteoporoses and bone mass effects of mechanical and nonmechanical agents. Bone and Mineral 2:73–85Google Scholar
  24. 24.
    Frost HM (1964) The laws of bone structure. Charles C. Thomas, SpringfieldGoogle Scholar
  25. 25.
    Frost HM (1986) Osteogenesis inperfecta: the setpoint proposal. Clin Orthop Rel Res 216:280–297Google Scholar
  26. 26.
    Frost HM (1983) The minimum effective strain. A determinant of bone architecture. Clin Orthop Rel Res 175:286–292Google Scholar
  27. 27.
    Eriksson C (1974) Streaming potentials and other water-dependent effects in mineralized tissues. Ann NY Acad Sci, 238–239Google Scholar
  28. 28.
    Otter M, Shoenung J, Williams WS (1985) Evidence for different sources of stress-generated potentials in wet and dry bone. J Orthop Res 3:321–324PubMedCrossRefGoogle Scholar
  29. 29.
    Pollack SR, Salastein R, Pienkowski D (1984) The electric double layer in bone and its influence on stress-generated potentials. Calcif Tissue Int (suppl) 36:577–581Google Scholar
  30. 30.
    Johnson MW (1984) Behavior of fluid in stressed bone and cellular stimulation. Calcif Tissue Int (suppl) 35:S72-S75CrossRefGoogle Scholar
  31. 31.
    Cochran GVB (1982) A primer of orthopaedic biomechanics. Churchill-Livingstone, EdinburghGoogle Scholar
  32. 32.
    Frost HM (1985) The pathomechanics of osteoporoses. Clin Orthop Rel Res 200:198–225Google Scholar
  33. 33.
    Smith EL, Smith PE, Ensign CJ, Shea MM (1984) Bone involution decrease in exercising middle aged women. Calcif Tissue Int (suppl) 36:129–138CrossRefGoogle Scholar
  34. 34.
    Talmage RV, Stinnett SS, Landwehr JT, Vincent LM, McCartney WH (1986) Age-related loss of bone mineral density in non-athletic and athletic women. Bone and Minneral 1:115–125Google Scholar
  35. 35.
    Anderson WAD, Kissane JM (1977) Pathology, 7th ed. CV Mosby, St. LouisGoogle Scholar
  36. 36.
    Jubb KVF, Kennedy PC, Palmer N (1985) Pathology of domestic animals. Academic Press, New YorkGoogle Scholar
  37. 37.
    Aegerter E, Kirkpatrick JA (1975) Orthopaedic diseases. WB Saunders Co, PhiladelphiaGoogle Scholar
  38. 38.
    Bogemull GP, Schwamm HA (1984) Orthopaedic pathology. WB Saunders Co, PhiladelphiaGoogle Scholar
  39. 39.
    Chamay A, Tschantz P (1972) Mechanical influences in bone remodeling. Experimental research on Wolff's Law. J Biomech 5:173–179PubMedCrossRefGoogle Scholar
  40. 40.
    Rutishauser E, Majno G (1950) Lésions osseuses par surcharge dans le squelette normale et pathologique. Bull Schweiz Akad der Med Wiss 5:333–342Google Scholar
  41. 41.
    Tschantz P, Rutishauser E (1967) La surcharge mécanique de l'os vivant. Annales d'Anat et Pathol 12:233–248Google Scholar
  42. 42.
    Frost HM (1986) Bone microdamage: factors that impair its repair. In: Uhthoff H (ed) Current concepts of bone fragility. Springer-Verlag, Berlin, pp. 329–361Google Scholar
  43. 43.
    Roesler H (1981) Some historical remarks on the theory of cancellous bone structure (Wolff's Law) In: Proceedings: joint ASME-ASCE applied mechanics, fluids engineering and bioengineering conferences Am Soc Mech Engin, New York, pp 27–42Google Scholar
  44. 44.
    Epker BN, O'Ryan F (1982) Determinants of class II dentofacial morphology, I: a biomechanical theory. In: NcNamara JA Jr, Carlson DS, Ribbens KA (eds) Effects of surgical intervention on cranofacial growth. University Michigan Press, Ann Arbor, 169–205Google Scholar
  45. 45.
    Liskova M, Hert J (1971) Reaction of bone to mechanical stimuli. Folia Morphol 19:301–317Google Scholar
  46. 46.
    Burr DB, Martin RN, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18:189–200PubMedCrossRefGoogle Scholar
  47. 47.
    Beaupre GS, Hayes WC (1985) Finite element analysis of a three-dimensional, open-celled model for trabecular bone. J Biomech Eng 107:249–256PubMedCrossRefGoogle Scholar
  48. 48.
    Fyhrie DP, Carter DR (1986) A unifying principle relating stress to trabecular bone morphology. J Orthop Res 4:304–317PubMedCrossRefGoogle Scholar
  49. 49.
    Hart RT, Davy DT, Heiple KG (1983) A predictive computational model for strain-induced remodeling in long bones. In: Transactions of the 29th Annual ORS, p 71Google Scholar
  50. 50.
    Meade JB, Cowin SC, Klawitter JJ, VanBuskirk WC, Skinner HB (1984) Bone remodeling due to continuously applied loads. Calcif Tissue Int (suppl) 36:S25-S30PubMedCrossRefGoogle Scholar
  51. 51.
    Parfitt AM (1984) The cellular basis of remodeling: the quantum concept reviewed in the light of recent advances in the cell biology of bone. Calcif Tissue Int (suppl) 36:37–45CrossRefGoogle Scholar
  52. 52.
    Frost HM (in press) Secondary osteon population densities. An algorithm for determining mean tissue age. Yrbk Phys AnthropGoogle Scholar
  53. 53.
    Kimmel DB (1985) A computer simulation of the mature skeleton. Bone 6:369–373PubMedCrossRefGoogle Scholar
  54. 54.
    Martin RB (1985) The usefulness of mathematical models for bone remodeling. Yearbook Phys Anthrop 227–236Google Scholar
  55. 55.
    Reeve J (1986) A stochastic analysis of iliac trabecular bone dynamics. Clin Orthop Rel Res 213:264–278Google Scholar
  56. 56.
    Cowin SC (1986) Wolff's Law of trabecular architecture at remodeling equilibrium. J Biomech Eng 108:83–88PubMedCrossRefGoogle Scholar
  57. 57.
    Courpron P (1981) Bone tissue mechanisms underlying osteoporoses. Orthop Clin North Am 12:513–546PubMedGoogle Scholar
  58. 58.
    Wolff JL (1892) Das gesetz der transformation der knochen A Hirschwald, BerlinGoogle Scholar
  59. 59.
    Schnitzler TM, Solomon L (1986) Histomorphometric analysis of a calcaneal stress fracture: a possible complication of fluoride therapy for osteoporosis. Bone 7:193–198PubMedCrossRefGoogle Scholar
  60. 60.
    Jaworski ZFG (1984) Lamellar bone turnover system and its effector organ. Calcif Tissue Int (suppl) 36:46–55CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • H. M. Frost
    • 1
  1. 1.Southern Colorado ClinicPuebloUSA

Personalised recommendations