Calcified Tissue International

, Volume 45, Issue 3, pp 157–164 | Cite as

The carbonate environment in bone mineral: A resolution-enhanced fourier transform infrared spectroscopy study

  • C. Rey
  • B. Collins
  • T. Goehl
  • I. R. Dickson
  • M. J. Glimcher
Laboratory Investigations

Summary

The environment of carbonate ions in bones of different species (rat, rabbit, chicken, cow, human) was investigated by Fourier Transform Infrared Spectroscopy (FTIR) associated with a self-deconvolution technique. The carbonate bands in thev2 CO32− domain show three components which were identified by using synthetic standards and different properties of the apatitic structure (ionic affinity for crystallographic locations, ionic exchange). The major component at 871 cm−1 is due to carbonate ions located in PO43− sites (type B carbonate). A band at 878 cm−1 was exclusively assigned to carbonate ions substituting for OH ions in the apatitic structure (type A carbonate). A band at 866 cm−1 not previously observed was shown to correspond to a labile carbonate environment. The intensity ratio of type A to type B carbonate appears remarkably constant in all bone samples. The 866 cm−1 carbonate band varies in its relative intensity in different species.

Key words

Carbonate Bone mineral Carbonate apatite Fourier transform infrared spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arends J, Jongebloed WL (1981) Apatite single crystals. Formation, dissolution and influence, of CO3 2− ions. Recveil Rev 100(1):3–9Google Scholar
  2. 2.
    Biltz RM, Pellegrino ED (1977) The nature of bone carbonate. Clin Orthop Rel Res 129:279–292Google Scholar
  3. 3.
    Hallsworth AS, Weatherell JA, Robinson C (1973) Loss of carbonate during the first stages of enamel caries. Caries Res 7:345–348PubMedCrossRefGoogle Scholar
  4. 4.
    Biltz RM, Pellegrino ED (1981) Skeletal carbonates and acid-base regulation. Mineral Electrolyte Metal 5:1–7Google Scholar
  5. 5.
    Elliott JC (1964) The crystallographic structure of dental enamel and related apatites. Ph.D. Thesis, Univeristy of London.Google Scholar
  6. 6.
    Elliott JC, Holcomb DW, Young RA (1985) Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcif Tissue Int 37:372–375PubMedGoogle Scholar
  7. 7.
    Termine JD, Eanes ED, Greenfield DJ, Nylen MU (1973) Hydrazine deproteinated bone mineral. Calcif Tissue Res 12:73–90PubMedCrossRefGoogle Scholar
  8. 8.
    Emerson WH, Fischer ED (1962) The infrared absorption spectra of carbonate in calcified tissues. Arch Oral Biol 7:671–683CrossRefGoogle Scholar
  9. 9.
    Baxter JD, Biltz RM, Pellegrino ED (1966) The physical state of bone carbonate: a comparative infrared study in several, mineralized tissues. Yale J Biol Med 3:456–470Google Scholar
  10. 10.
    LeGeros RZ, Trautz OR, Klein E, LeGeros JP (1969) Two types of carbonates substitution in the apatite structure. Experientia 25(1):5–7PubMedCrossRefGoogle Scholar
  11. 11.
    Nelson DGA, Featherstone, JDB (1982) Preparation analysis and characterization of carbonated apatites. Calcif Tissue Int 34:S69–81PubMedGoogle Scholar
  12. 12.
    Suzuki M (1974) A study of physicochemical nature of hard tissues. Hirosaki Igaku 26:20–25Google Scholar
  13. 13.
    LeGros R, Balmain N, Bonel G (1986) Structure and composition of the mineral phase of periosteal bone. J Chem Res Synop 1:8–9Google Scholar
  14. 14.
    Kaupinen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spect 35: 271–276CrossRefGoogle Scholar
  15. 15.
    Roufosse AH, Landis WJ, Sabine NK, Glimcher MJ (1979) Identification of brushite in newly deposited bone mineral from embryonic chicks. J Ultrastruct Res 68:235–255PubMedCrossRefGoogle Scholar
  16. 16.
    Trombe JC, Bonel G, Montel G (1969) Etude par spectrometrie d'absorption dans l'infrarouge de l'ion carbonate dans quelques apatites preparées a haute température. CR Acad Sci Paris 268:941–944Google Scholar
  17. 17.
    Vignoles-Montrejaud M (1984) Contribution a l'étude des apatites carbonatées de type B These d'Etat, I.N.P. ToulouseGoogle Scholar
  18. 18.
    Roufosse AH, Aue JE, Roberts JE, Glimcher MJ, Griffin RG (1984) Investigation of the mineral phases of bone by solid-state phorphorus 31 major angle sample spinning nuclear magnetic resonance. Biochemistry 23:6115–6126PubMedCrossRefGoogle Scholar
  19. 19.
    Pellegrino ED, Biltz RM (1972) Mineralization in the chicks embryo: I monohydrogen phosphate and carbonate relationships during maturation of bone crystals complex. Calcif Tissue Res 10:128–135PubMedCrossRefGoogle Scholar
  20. 20.
    LeGeros RZ, Kijkowska R, LeGeros JP, Abergas T, Bleiwas H (1987) CO3-for-OH (type A) and CO3-for-PO4 (type B) substitutions in precipiated carbonate-apatites. IADR Meeting Abstracts, J Dent Res 66–190Google Scholar
  21. 21.
    Gee A, Dietz VR (1955) Pyrophosphate formation upon ignition of precipitated basic calcium phosphate. J Am Chem Soc 77:2961–2965CrossRefGoogle Scholar
  22. 22.
    LeGeros RZ, LeGeros JP (1983) Carbonate analysis of synthetic mineral and biological apatites. IADR Meeting Abstracts. J Dent Res 62–259Google Scholar
  23. 23.
    Bonel G (1972) Contribution a l'étude de la carbonatation des apatites. Ann Chim 7:127–144Google Scholar
  24. 24.
    LeGeros RZ, Trautz OR, LeGeros JP, Klein E (1968) Carbonate substitution in the apatitic structure. Bull Soc Chim Fr 1712–1718Google Scholar
  25. 25.
    Trombe JC (1972) Contribution a l'Etude de la decomposition et de la reactivite de certaines apatites hydroxylées carbonatées ou Fluorées alcalino terreuses. Thèse d'Etat, Université P. Sabitier ToulouseGoogle Scholar
  26. 26.
    Roux P (1982) Contribution a l'Etude du comportement et de la synthèse des apatites carbonatées sous haute pression. Thèse d'Etat, I.N.P. ToulouseGoogle Scholar
  27. 27.
    McClellan GH, Guerry H, Lehr JR (1969) Crystal chemical investigations of natural apatites. An. Miner. 54:1374–1391Google Scholar
  28. 28.
    Blumenthal NC, Posner AS (1973) Hydroxyapatite: mechanisms of formation and properties. Calcif Tissue Res 13:235–243PubMedCrossRefGoogle Scholar
  29. 29.
    Vignoles C (1973) Contribution a l'étude de l'influence des ions alcalins sur la carbonatation dans les sites de type B des apatites phosphocalciques. These de 3 cycle I.N.P. ToulouseGoogle Scholar
  30. 30.
    Biltz RM, Pellegrino ED (1971) The hydroxyl content of calcified tissue mineral. Calcif Tissue Res 7:259Google Scholar
  31. 31.
    Grynpas MD, Bonar LC, Glimcher MJ (1984) Failure to detect an amorphous calcium-phosphate solid phase in bone mineral: a radial distribution function study. Calcif Tissue Int 36:291–301PubMedCrossRefGoogle Scholar
  32. 32.
    Posner AS, Botts F (1975) Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res 8:273–281CrossRefGoogle Scholar
  33. 33.
    Triffitt JT, Terepka AR, Neuman WF (1968) A comparative study of the exchange, in vivo of major constituents of bone mineral. Calcif Tissue Res 2:165–176PubMedCrossRefGoogle Scholar
  34. 34.
    Hendricks SB, Hill WL (1950) The nature of bone and phosphate rocks. Proc Natl Acad Sci 36:731PubMedCrossRefGoogle Scholar
  35. 35.
    Johnson NW (1966) Difference in the shape of human enamel crystallites after partial destruction by caries, EDTA, and various acids. Arch Oral Biol 11:1421–1424PubMedCrossRefGoogle Scholar
  36. 36.
    Daculsi G, LeGeros RZ (1986) Central dark lines in synthetic and biological apatites. IADR Meeting Abstracts. J Dent Res 65:802Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • C. Rey
    • 3
  • B. Collins
    • 1
  • T. Goehl
    • 1
  • I. R. Dickson
    • 2
  • M. J. Glimcher
  1. 1.Department of ChemistryNational Institute of Environmental Health ScienceResearch Triangle ParkUSA
  2. 2.Department of MedicineUniversity of CambridgeCambridgeEngland
  3. 3.Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthoapedic Surgery, Children's HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations