Advertisement

Calcified Tissue International

, Volume 46, Issue 6, pp 384–394 | Cite as

Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in thev 4 PO4 domain

  • Christian Rey
  • M. Shimizu
  • B. Collins
  • Melvin J. Glimcher
Laboratory Investigations

Summary

In order to investigate the possible existence in biological and poorly crystalline synthetic apatites of local atomic organizations different from that of apatite, resolution-enhanced, Fourier transform infrared spectroscopy studies were carried out on chicken bone, pig enamel, and poorly crystalline synthetic apatites containing carbonate and HPO4 2− groups. The spectra obtained were compared to those of synthetic well crystallized apatites (stoichiometric hydroxyapatite, HPO4 2−-containing apatite, type B carbonate apatite) and nonapatitic calcium phosphates which have been suggested as precursors of the apatitic phase [octacalcium phosphate (OCP), brushite, and β tricalcium phosphate and whitlockite]. The spectra of bone and enamel, as well as poorly crystalline, synthetic apatite in thev 4 PO4 domain, exhibit, in addition to the three apatitic bands, three absorption bands that were shown to be independent of the organic matrix. Two low-wave number bands at 520–530 and 540–550 cm−1 are assigned to HPO4 2−. Reference to known calcium phosphates shows that bands in this domain also exist in HPO4 2−-containing apatite, brushite, and OCP. However, the lack of specific absorption bands prevents a clear identification of these HPO4 2− environments. The third absorption band (610–615 cm−1) is not related to HPO4 2− or OH ions. It appears to be due to a labile PO4 3− environment which could not be identified with any phosphate environment existing in our reference samples, and thus seems specific of poorly crystalline apatites. Correlation of the variations in band intensities show that 610–615 cm−1 band is related to an absorption band at 560 cm−1 superimposed on an apatite band. All the nonapatitic phosphate environments were shown to decrease during aging of enamel, bone, and synthetic apatites. Moreover, EDTA etching show that the labile PO4 3− environment exhibited a heterogeneous distribution in the insoluble precipitate.

Key words

Fourier transform infrared spectroscopy PO4 Bone Enamel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eanes ED, Termine JD, Posner AS (1967) Amorphous calcium phosphate in skeletal tissue. Clin Orthop 53:223–235PubMedGoogle Scholar
  2. 2.
    Termine JD, Posner AS (1966) Infrared analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science 153:1523–1525PubMedCrossRefGoogle Scholar
  3. 3.
    Termine JD, Posner AS (1966) Amorphous/crystalline inter-relationship in bone mineral. Calcif Tissue Res 6:335–342Google Scholar
  4. 4.
    Francis MD, Webb NC (1971) Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calcif Tissue Res 6:335–342PubMedCrossRefGoogle Scholar
  5. 5.
    Brown WE (1966) Crystal growth of bone mineral. Clin Orthop 44:205–220PubMedGoogle Scholar
  6. 6.
    Eanes ED, Posner AS (1965) Kinetics and mechanism of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite. Trans NY Acad Sci 28:233–241Google Scholar
  7. 7.
    Nancollas GH, Tomson MB (1976) The precipitation of biological minerals. Faraday Discuss Chem Soc, 61:173–183Google Scholar
  8. 8.
    Boskey AL, Posner AS (1973) Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH dependent, solution-mediate, solid-solid conversion. J Phys Chem 77:2313–2317CrossRefGoogle Scholar
  9. 9.
    Furedi-Milhofer H, Brecevic L, Purgaric B (1976) Crystal growth and phase transformation in the precipitation of calcium phosphates. Faraday Discuss Chem Soc 61:184–193PubMedCrossRefGoogle Scholar
  10. 10.
    Legros R, Balmain N, Bonel G (1986) Structure and composition of the mineral phase of periosteal bone. J Chem Res Synop 1:8–9Google Scholar
  11. 11.
    Pellegrino ED, Blitz RM (1972) Mineralization in the chicks embryo. I: monohydrogen phosphate and carbonate relationship during maturation of the bone crystal complex. Calcif Tissue Res 10:128–135PubMedCrossRefGoogle Scholar
  12. 12.
    Grynpas MD, Bonar LC, Glimcher MJ (1984) Failure to detect amorphous calcium phosphate solid phase in bone mineral: a radial distribution function study. Calcif Tissue Int 36:291–309PubMedCrossRefGoogle Scholar
  13. 13.
    Grynpas MD, Bonar LC, Glimcher MJ (1984) X-ray diffraction radial distribution function studies of bone mineral and synthetic calcium phosphates. J Mater Sci 19:723–736CrossRefGoogle Scholar
  14. 14.
    Roufosse AH, Aue WP, Roberts JE, Glimcher MJ, Griffin RG (1984) Investigation of the mineral phase of bone by solid state phosphorus-31 magic angle sample spinning nuclear magnetic resonance. Biochem 23:6115–6120CrossRefGoogle Scholar
  15. 15.
    Glimcher MJ (1987) The nature of the mineral component of bone and the mechanism of calcification. In: Griffin PP (ed) American Academy of Orthopaedic Surgeons Instructional Course Lectures XXXVI. Park Ridge, IL, pp 49–69Google Scholar
  16. 16.
    Glimcher MJ, Bonar LC, Grynpas MD, Landis WJ, Roufosse AH (1981) Recent studies of bone mineral: is the amorphous calcium phosphate theory valid? J Cryst Growth 53:100–119CrossRefGoogle Scholar
  17. 17.
    Aoba T, Moriwaki Y, Doi Y, Okazaki N, Takahashi J, Yagi T (1980) Diffuse X-ray scattering from apatite crystals and its relation to amorphous bone mineral. J Osaka Univ Dent School 20:81–90Google Scholar
  18. 18.
    Munzenberg KJ, Gebhardt M (1972) Crystalline calcium phosphates of bone. Biomineralization 6:91–95Google Scholar
  19. 19.
    Roufosse AH, Landis WJ, Sabine NK, Glimcher MJ (1979) Identification of brushite in newly deposited bone mineral from embryonic chicks. J Ultrastruct Res 68:235–255PubMedCrossRefGoogle Scholar
  20. 20.
    Bonar LC, Grynpas MC, Glimcher MJ (1984) Failure to detect crystalline brushite in embryonic chicks and bovine bone by X-ray diffraction. J Ultrastruct Res 86:93–99PubMedCrossRefGoogle Scholar
  21. 21.
    Brown WE, Smith JP, Lehr JR, Frazier AW (1962) Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196:1050–1055CrossRefGoogle Scholar
  22. 22.
    Brown WE, Schroeder LW, Ferris JS (1979) Interlayering of crystalline octacalcium phosphate and hydroxyapatite. J Phys Chem 83:1385–1388CrossRefGoogle Scholar
  23. 23.
    Aue WP, Roufosse AH, Glimcher MJ, Griffin RG (1984) Solid state phosphorus nuclear magnetic resonance study of synthetic solid phase of calcium phosphate: potential models of bone mineral. Biochemistry 23:6110–6114PubMedCrossRefGoogle Scholar
  24. 24.
    Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectras 35:271–276CrossRefGoogle Scholar
  25. 25.
    Bonar LC, Roufosse AH, Sabine WK, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209PubMedCrossRefGoogle Scholar
  26. 26.
    Fukae M, Tanabe T, Ijiri H, Shimizu M (1980) Studies on porcine enamel proteins: a possible original enamel protein. Tsurumi Univ Dent J 6(2):87–94Google Scholar
  27. 27.
    Heughebaert JC, Montel G (1970) Preparation de l'orthophosphate tricalcique pur. Bull Soc Chim 8–9:2923–2924Google Scholar
  28. 28.
    Brown WE, Lehr JR, Smith JP, Frazier AW (1957) Crystallography of octacalcium phosphate. J Am Chem Soc 79:5318–5319CrossRefGoogle Scholar
  29. 29.
    LeGros RZ, Kijkowska R, LeGeros JP (1984) Formation and transformation of octacalcium phosphate: a preliminary report. Scanning Electron Microscopy 4:1771–1777Google Scholar
  30. 30.
    Leroux J, Baratali T, Montel G (1963) Influence de certaines impuretes sur la nature et les proprietes du phosphate tricalcique precipite. CR Acad Sci Paris 256:1312–1314Google Scholar
  31. 31.
    Rey CC, Collins B, Geohl T, Dickson IR, Glimcher MJ (in press) The carbonate environment in bone mineral. A resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue IntGoogle Scholar
  32. 32.
    Trombe JC (1973) Decomposition et reactivite de quelques apatites hydroxylees et carbonatees. Ann Chim 8(4):251–269Google Scholar
  33. 33.
    Labarthe JC, Bonel G, Montel G (1973) Sur la structure et les proprietes des apatites carbonatees de type B phosphocalciques. Ann Chim 8:289–301Google Scholar
  34. 34.
    Rey C (1984) Etude des relations entre apatites et composes moleculaires. These d Etat. Institut National Polytechnique de ToulouseGoogle Scholar
  35. 35.
    Fowler BO, Moreno EC, Brown WE (1960) Infrared spectra of hydroxyapatite, octacalcium phosphate and pyrolyzed ocatacalcium phosphate. Arch Oral Biol 11:477–496CrossRefGoogle Scholar
  36. 36.
    Petrov I, Soptrajanov B, Fuson N, Lawson JR (1967) Infrared investigation of dicalcium phosphates. Spectrochimica Acta 23A:2637–2646Google Scholar
  37. 37.
    Tochon-Danguy HJ (1979) Contribution à l'étude physiocochimique de la substance minérale dans les tissus calcifiés. Thèse de docteur d'Université de Paris VIIGoogle Scholar
  38. 38.
    Termine JD, Eanes ED, Greenfield DJ, Nylen MU (1973) Hydrazine-deproteinated bone mineral. Calcif Tissue Res 12:90–93CrossRefGoogle Scholar
  39. 39.
    Blumenthal NC, Posner AS (1973) Hydroxyapatite: mechanism of formation and properties. Calcif Tissue Res 13:235–243PubMedCrossRefGoogle Scholar
  40. 40.
    Blitz RM, Pellegrino ED (1971) The hydroxyl content of calcified tissue mineral. Calcif Tissue Res 7:259CrossRefGoogle Scholar
  41. 41.
    Greenfield DJ, Termine JD, Eanes ED (1974) A chemical study of apatites prepared by hydrolysis of amorphous calcium phosphate in carbonate containing aqueous solutions. Calcif Tissue Res 14:131–138PubMedCrossRefGoogle Scholar
  42. 42.
    Brown WE (1962) Crystal structure of octacalcium phosphate. Nature 196:1048–1050CrossRefGoogle Scholar
  43. 43.
    Blumenthal NC, Betts F, Posner AS (1975) Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite. Calcif Tissue Int 18:81–90CrossRefGoogle Scholar
  44. 44.
    Heughebaert JC (1977) Contribution a l'etude de l'evolution des orthophosphates de calcium precipites amouphes en orthophosphates apatitiques. These d'Etat. Institut National Polytechnique de ToulouseGoogle Scholar
  45. 45.
    LeGeros RZ, Trautz OR, LeGeros JP, Klein E (1968) Carbonate substitution in the apatitic structure. Bull Soc Chim Fr 1712–1718Google Scholar
  46. 46.
    Trombe JC (1972) Contribution a l'etude de la composition et de la reactivite de certaines apatities hydroxylees carbonatees on fluorees alcalino terreuses. These d'Etat. Universite Paul Sabatier. ToulouseGoogle Scholar
  47. 47.
    Fowler BO (1974) Infrared studies of apatites. II: Preparation of normal and isotopically substituted calcium strontium and barium hydroxyapatites and spectra-structure-composition correlations. Inorg Biochem 13(1):207–214CrossRefGoogle Scholar
  48. 48.
    Posner AS, Betts F (1975) Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Accounts of Chemical Research 8:273–281CrossRefGoogle Scholar
  49. 49.
    Posner AS (1987) Bone mineral and the mineralization process. Bone Min Res 5:65–116Google Scholar

Copyright information

© Springer-Verlag New York Inc 1990

Authors and Affiliations

  • Christian Rey
    • 3
  • M. Shimizu
    • 1
  • B. Collins
    • 2
  • Melvin J. Glimcher
    • 3
  1. 1.School of Dental MedicineTsurumi UniversityYokohamaJapan
  2. 2.Department of ChemistryNational Institute of Environmental Health ScienceResearch Triangle ParkUSA
  3. 3.Laboratory for the Study of Skeletal Disorders and RehabilitationThe Children's Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations