Calcified Tissue International

, Volume 37, Issue 2, pp 158–164 | Cite as

The effect of metabolic acidosis on vitamin D metabolites and bone histology in uremic rats

  • Yuk-Luen Chan
  • Elliott Savdie
  • Rebecca S. Mason
  • Solomon Posen
Laboratory Investigations


Biochemical data and skeletal histomorphometric measurements are presented for normal rats and for two groups of rats rendered uremic by partial nephrectomy. In one of these groups chronic acidosis was induced by the oral administration of hydrochloric acid. Uremic animals had higher urine calcium excretion rates and lower serum concentrations of vitamin D metabolites than normal rats. Chronic acid loading of uremic rats resulted in hypercalcemia, elevated serum parathyroid hormone concentrations, and a significant loss of trabecular bone in addition to the above changes. Greater osteoclast densities and higher resorption surfaces were seen in the uremic acidotic animals than in the other two groups. The acidotic uremic state induces more potent changes in calcium metabolism and bone structure than uremia alone.

Key words

Uremic acidotic Uremic nonacidotic Metabolic acidosis Hypercalcemia Histomorphometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avioli LV (1978) Renal osteodystrophy. In: Avioli LV, Krane SM (eds) Metabolic bone disease. Vol. II. Academic Press, New York, pp 149–215Google Scholar
  2. 2.
    Mora Palma FJ, Ellis HA, Cook DB, Dewar JH, Ward MK, Wilkinson R, Kerr DNS (1983) Osteomalacia in patients with chronic renal failure before dialysis or transplantation. Quart J Med 52:332–348PubMedGoogle Scholar
  3. 3.
    Burnell JM (1968) In vivo response of muscle to changes in CO2 tension or extracellular bicarbonate. Am J Physiol 215:1376–1383PubMedGoogle Scholar
  4. 4.
    Fraley DS, Adler S (1979) An extrarenal role for parathyroid hormone in the disposal of acute acid loads in rats and dogs. J Clin Invest 63:985–997PubMedGoogle Scholar
  5. 5.
    Bushinsky DA, Krieger NS, Geisser DI, Grossman EB, Coe FL (1983) Effects of pH on bone calcium and proton fluxes in vitro. Am J Physiol 245:F204-F209PubMedGoogle Scholar
  6. 6.
    Irving L, Chute AL (1932) The participation of the carbonates of bone in the neutralization of ingested acid. J Cell Comp Physiol 2:157–172CrossRefGoogle Scholar
  7. 7.
    Bergstrom WH (1954) The relationship of sodium and potassium to carbonate in bone. J Biol Chem 206:711–715PubMedGoogle Scholar
  8. 8.
    Burnell JM, Teubner E (1971) Changes in bone sodium and carbonate in metabolic acidosis and alkalosis in the dog. J Clin Invest 50:327–331PubMedGoogle Scholar
  9. 9.
    Goulding A, Irvine ROH (1974) Acid-base studies in chronic renal failure. Prog. Biochem. Pharmacol 9:196–205PubMedGoogle Scholar
  10. 10.
    Jaffe HL, Bodansky A, Chandler JP (1932) Ammonium chloride decalcification as modified by calcium intake: the relation between generalized osteoporosis and osteitis fibrosa. J Exp Med 56:823–834CrossRefPubMedGoogle Scholar
  11. 11.
    Barzel US, Jowsey J (1969) The effects of chronic acid and alkali administration on bone turnover in adult rats. Clin Sci 36:517–524PubMedGoogle Scholar
  12. 12.
    Delling G, Donath K (1973) Morphometrische, elektronenmikroskopische und physikalisch-chemische Untersuchungen uber die experimentelle Osteoporose bei chronischer Acidose. Virchow's Arch (A) Pathol Anat 358:321–330CrossRefGoogle Scholar
  13. 13.
    Fingerhut B, Poock A, Miller H (1969) Automated fluorometric method for the determination of serum calcium. Clin Chem 15:870–878PubMedGoogle Scholar
  14. 14.
    Zilversmit DB, Davis AK (1950) Microdetermination of plasma phospholipids by trichloroacetic acid precipitation. J Lab Clin Med 35:155–160PubMedGoogle Scholar
  15. 15.
    Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 31:87–96PubMedCrossRefGoogle Scholar
  16. 16.
    Seshadri MS, Chan YL, Wilkinson MR, Mason RS, Posen S (1985) Some problems associated with adenylate cyclase bioassays for parathyroid hormone. Clin Sci 68:311–319PubMedGoogle Scholar
  17. 17.
    Mason RS, Posen S (1977) Some problems associated with assay of 25-hydroxycalciferol in human serum. Clin Chem 23:806–810PubMedGoogle Scholar
  18. 18.
    Mason RS, Lissner D, Grunstein HS, Posen S (1980) A simplified assay for dihydroxylated vitamin D metabolites in human serum: application to hyper- and hypovitaminosis D Clin Chem 26:444–450PubMedGoogle Scholar
  19. 19.
    Henry RJ, Sobel C, Segalove M (1956) Turbidometric determination of proteins with sulfosalicylic and trichloracetic acids. Proc Soc Exp Biol Med 92:748–751PubMedGoogle Scholar
  20. 20.
    Chan YL, Mason RS, Parmentier M, Savdie E, Lissner D, Posen S (1983) Vitamin D metabolism in nephrotic rats. Kidney Int 24:336–341PubMedGoogle Scholar
  21. 21.
    Evans RA, Dunstan CR, Baylink DJ (1979) Histochemical identification of osteoclasts in undecalcified sections of human bone. Mineral Electrolyte Metab 2:179–185Google Scholar
  22. 22.
    Frost HM (1977) A method of analysis of trabecular bone dynamics. In: Meunier PJ (ed) Bone histomorphometry, Proceedings of the Second International Workshop. Lyon, July 1976. Armour-Montagu, Paris, pp 445–476Google Scholar
  23. 23.
    Schenk RK (1976) Basic symbolism for stereology. In: Jaworski ZFG (ed) Bone morphometry. Proceedings of the First International Workshop, Ottawa, March 1973, University of Ottawa Press, pp. 360–362Google Scholar
  24. 24.
    Chanutin A, Ferris EB (1932) Experimental renal insufficiency produced by partial nephrectomy. Arch Int Med 49:767–787Google Scholar
  25. 25.
    Vu Van Nguyen, Jowsey J (1970) Bone metabolism. The acute effects of hormones, vitamin D3 and acidosis during an in vivo perfusion of adult dog forelimbs. J Bone Joint Surg 52A:1041–1049Google Scholar
  26. 26.
    Beck N, Webster SK (1976) Effects of acute metabolic acidosis on parathyroid hormone action and calcium mobilization. Am J Physiol 230:127–131PubMedGoogle Scholar
  27. 27.
    Mishler DR, Kraut JA, Kurokawa K (1983) Mobilization of calcium by metabolic acidosis: evidence for enhanced cell mediated bone resorption. (Abstract). Kidney Int 23:106Google Scholar
  28. 28.
    Bushinsky DA, Favus MJ, Schneider AB, Sen PK, Sherwood LM, Coe, FL (1982) Effects of metabolic acidosis on PTH and 1,25(OH)2D3 response to low calcium diet. Am J Physiol 243:F570-F575PubMedGoogle Scholar
  29. 29.
    Sutton RAL, Wong NLM, Dirks JH (1979) Effects of metabolic acidosis and alkalosis on sodium and calcium transport in the dog kidney. Kidney Int 15:520–533PubMedGoogle Scholar
  30. 30.
    Batlle D, Itsarayoungyuen K, Hays S, Arruda JAL, Kurtzman NA (1982) Parathyroid hormone is not anticalciuric during chronic metabolic acidosis. Kidney Int 22:264–271PubMedGoogle Scholar
  31. 31.
    Marone CC, Wong NLM, Sutton RAL, Dirks JH (1981) Acidosis and renal calcium excretion in experimental chronic renal failure. Nephron 28:294–296PubMedGoogle Scholar
  32. 32.
    Newell CK, Beauchene RE (1975) Effects of dietary calcium level, acid stress and age on renal serum and bone responses of rats. J Nutr 105:1039–1047PubMedGoogle Scholar
  33. 33.
    Upton PK, L'Estrange JL (1977) Effects of chronic hydrochloric and lactic acid administration on food intake, blood acid-base balance and bone composition of the rat. Q J Exp Physiol 62:223–235Google Scholar
  34. 34.
    Kaye M (1974) The effect in the rat of varying intakes of dietary calcium, phosphorus and hydrogen ion on hyperparathyroidism due to chronic renal failure. J Clin Invest 53:256–260PubMedGoogle Scholar
  35. 35.
    Chan YL, Alfrey AC, Posen S, Lissner D, Hills E, Dunstan CR, Evans RA (1983) The effect of aluminum on normal and uremic rats: tissue distribution, vitamin D metabolites and quantitative bone histology. Calcif Tissue Int 39:344–351CrossRefGoogle Scholar
  36. 36.
    Dominguez JH, Raisz LG (1979) Effects of changing hydrogen ion, carbonic acid and bicarbonate concentrations on bone resorption in vitro. Calcif Tissue Int 29:7–13PubMedCrossRefGoogle Scholar
  37. 37.
    Goulding A, Broom MF (1979) Effects of diphosphonate and colchicine administration upon acid-base changes induced in rats by bilateral nephrectomy. Clin Sci 57:19–23PubMedGoogle Scholar
  38. 38.
    Kaplan EL, Hill BJ, Locke S, Toth DN, Peskin GW (1971) Metabolic acidosis and parathyroid hormone secretion in sheep (Abstract). J Lab Clin Med 78:819PubMedGoogle Scholar
  39. 39.
    Adams ND, Gray RW, Lemann J (1979) The calciuria of increased fixed acid production in humans: evidence against a role for parathyroid hormone and 1,25(OH)2D-vitamin D Calcif Tissue Int 28:233–238PubMedCrossRefGoogle Scholar
  40. 40.
    Weber HP, Gray RW, Dominguez JH, Lemann J (1976) The lack of effect of chronic metabolic acidosis on 25-OH-vitamin D metabolism and serum parathyroid hormone in humans. J Clin Endocrinol Metab 43:1047–1055PubMedGoogle Scholar
  41. 41.
    Wachman A, Bernstein DS (1970) Parathyroid hormone in metabolic acidosis. Clin Orthop Rel Res 69:252–263Google Scholar
  42. 42.
    Coe FL, Firpo JF, Hollandsworth DL, Segil L, Canterbury JM, Reiss E (1975) Effect of acute and chronic metabolic acidosis on serum immunoreactive parathyroid hormone in man. Kidney Int 8:262–273Google Scholar
  43. 43.
    Madias NE, Johns CA, Homer SM (1982) Independence of the acute acid-buffering response from endogenous parathyroid hormone. Am J Physiol 243:F141-F149PubMedGoogle Scholar
  44. 44.
    Martin KJ, Freitag JJ, Bellorin-Font E, Conrades MB, Klahr S, Slatopolsky E (1980) The effect of acute acidosis on the uptake of parathyroid hormone and the production of adenosine 3′,5′-monophosphate by isolated perfused bone. Endocrinology 106:1607–1611PubMedCrossRefGoogle Scholar
  45. 45.
    Bikle DD, Rasmussen H (1975) The ionic control of 1,25-dihydroxyvitamin D3 production in isolated chick renal tubules. J Clin Invest 55:292–298PubMedGoogle Scholar
  46. 46.
    Sauveur B, Garabedian M, Fellot C, Mongin P, Balsan S (1977) The effect of induced metabolic acidosis on vitamin D3 metabolism in rachitic chicks. Calcif Tissue Res 23:121–124PubMedCrossRefGoogle Scholar
  47. 47.
    Baran DT, Lee SW, Jo OD, Avioli LV (1982) Acquired alterations in vitamin D metabolism in the acidotic state. Calcif Tissue Int 34:165–168PubMedCrossRefGoogle Scholar
  48. 48.
    Lee SW, Russell J, Avioli LV (1977) 25-Hydroxycholecalciferol to 1,25-dihydroxycholecalciferol: conversion impaired by systemic metabolic acidosis. Science 195:994–996PubMedCrossRefGoogle Scholar
  49. 49.
    Reddy GS, Jones G, Kooh SW, Fraser D (1982) Inhibition of 25-hydroxyvitamin D3-1-hydroxylase by chronic metabolic acidosis. Am J Physiol 243:E265-E271PubMedGoogle Scholar
  50. 50.
    Kawashima H, Kraut JA, Kurokawa K (1982) Metabolic acidosis suppresses 25-hydroxy vitamin D3-1α-hydroxylase in the rat kidney. J Clin Invest 70:135–140PubMedCrossRefGoogle Scholar
  51. 51.
    Cunningham J, Bikle DD, Avioli LV (1984) Acute but not chronic, metabolic acidosis disturbs 25-hydroxyvitamin D3 metabolism. Kidney Int 25:47–52PubMedGoogle Scholar
  52. 52.
    Gafter U, Kraut JA, Lee DBN, Silis V, Walling MW, Kurokawa K, Haussler MR, Coburn JW (1980) Effect of metabolic acidosis on intestinal absorption of calcium and phosphorus. Am J Physiol 239:G480-G484PubMedGoogle Scholar
  53. 53.
    Kraut JA, Gordon EM, Ransom JC, Horst R, Slatopolsky E, Coburn JW, Kurokawa K (1983) Effect of chronic metabolic acidosis on vitamin D metabolism in humans. Kidney Int 24:644–648PubMedGoogle Scholar
  54. 54.
    Chesney RW, Kaplan BS, Phelps M, DeLuca HF Renal Tubular acidosis does not alter circulating values of calcitriol (1,25(OH)2D) (Abstract) Am Soc Bone Mineral Res, Fifth Annual Scientific Meeting, San Antonio, June 1983, A31Google Scholar
  55. 55.
    Cochran M, Nordin BEC (1969) Role of acidosis in renal osteomalacia. Br Med J 2:276–279PubMedCrossRefGoogle Scholar
  56. 56.
    Ingham JP, Kleerekoper M, Stewart JH, Posen S (1974) Symptomatic skeletal disease in non-terminal renal failure. Med J Aust 1:873–876PubMedGoogle Scholar
  57. 57.
    Brenner RJ, Spring DB, Sebastian A, McSherry EM, Genant HK, Palubinskas AJ, Morris RC (1982) Incidence of radiographically evident bone disease, nephrocalcinosis and nephrolithiasis in various types of renal tubular acidosis. N Engl J Med 307:217–221PubMedCrossRefGoogle Scholar
  58. 58.
    Cunningham J, Fraher LJ, Clemens TL, Revell PA, Papapoulos SE (1982) Chronic acidosis with metabolic bone disease. Effect of alkali on bone morphology and vitamin D metabolism. Am J Med 73:199–204PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Yuk-Luen Chan
    • 1
  • Elliott Savdie
    • 1
  • Rebecca S. Mason
    • 1
  • Solomon Posen
    • 1
  1. 1.Endocrine and Renal UnitsRoyal North Shore HospitalSt. LeonardsAustralia

Personalised recommendations