Skip to main content
Log in

Variations on the Kepler problem

  • Part III. Invited Papers Dedicated to Lawrence Biedenharn
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The elliptical orbits resulting from Newtonian gravitation are generated with a multifaceted symmetry, mainly resulting from their conservation of both angular momentum and a vector fixing their orientation in space—the Laplace or Runge-Lenz vector. From the ancient formalisms of celestial mechanics, I show a rather counterintuitive behavior of the classical hydrogen atom, whose orbits respond in a direction perpendicular to a weak externally-applied electric field. I then show how the same results can be obtained more easily and directly from the intrinsic symmetry of the Kepler problem. If the atom is subjected to an oscillating electric field, it enjoys symmetry in the time domain as well, which is manifest by quasi-energy states defined only modulo ħω. Using the Runge-Lenz vector in place of the radius vector leads to an exactly-solvable model Hamiltonian for an atom in an oscillating electric field—embodying one of the few meaningful exact solutions in quantum mechanics, and a member of an even more exclusive set of exact solutions having a time-dependent Hamiltonian. I further show that, as long as the atom suffers no change in principal quantum number, incident radiation will produce harmonic radiation with polarization perpendicular to the incident radiation. This unusual polarization results from the perpendicular response of the wavefunction, and is distinguished from most usual harmonic radiation resulting from a scalar nonlinear susceptibility. Finally, I speculate on how this radiation might be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Goldstein,Am. J. Phys. 43, 737–738 (1975);44, 1123 (1976).

    Article  ADS  Google Scholar 

  2. F. J. Dyson, “Mathematics in the Physical Sciences”, inThe Mathematical Sciences: A Collection of Essays, edited by the National Research Council's Committee on support of Research in the Mathematical Sciences (The M.I.T. Press, Cambridge, Massachusetts and London, England, 1969), p. 97.

    Google Scholar 

  3. G. Houlton, “Einstein. The Life and Times,” by R. W. Clark, book review,New York Times Book Review, September 5, 1–20 (1971).

  4. D. Aebersold and L. C. Biedenharn,Phys. Rev. A 15, 441 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  5. V. A. Kostelecký and N. Russel,J. Math. Phys. 37, 2166 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. G. C. Baldwin and J. C. Solem,Laser Phys. 5, 231 (1995).

    Google Scholar 

  7. G. C. Baldwin, J. C. Solem, and V. I. Gol'danskii,Rev. Mod. Phys. 53, 687 (1981).

    Article  ADS  Google Scholar 

  8. K. Boyer and C. Rhodes,Phys. Rev. Lett. 54, 1490 (1985); C. Rhodes,Science 30, 1345 (1985).

    Article  ADS  Google Scholar 

  9. L. C. Biedenharn, G. C. Baldwin, K. Boyer, and J. C. Solem, “Nuclear excitation by laserdriven coherent outer shell electron oscillation,” inAdvances in Laser Science W. C. Stwalley and M. Lapp, eds., Optical Engineering, Series 6 (American Institute of Physics, New York, 1986), p. 52.

    Google Scholar 

  10. J. C. Solem and L. C. Biedenharn,J. Quant. Spectrosc. Radial. Transfer 40, 707 (1988).

    Article  ADS  Google Scholar 

  11. J. C. Solem,J. Quant. Spectrosc. Radial. Transfer 40, 713 (1988).

    Article  ADS  Google Scholar 

  12. A. de Kertanguy, I. C. Percival, and D. Richards,J. Phys. B 14, 641 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. E. Roy,Orbital Motion (Wiley, New York, 1978), p. 184; F. R. Moulton,An Introduction to Celestial Mechanics (Dover, New York, 1970), p. 404.

    MATH  Google Scholar 

  14. J. C. Solem,Am. J. Phys. 55, 906 (1987).

    Article  ADS  Google Scholar 

  15. M. Born,Mechanics of the Atom (Bell, London, 1960).

    Google Scholar 

  16. L. C. Biedenharn and J. C. Louck,Angular Momentum in Quantum Physics, (Addison-Welsey, Reading, Massachusetts, 1981), p. 360.

    MATH  Google Scholar 

  17. L. C. Biedenharn, L. S. Brown, and J. C. Solem,Am. J. Phys. 56, 661 (1988).

    Article  ADS  Google Scholar 

  18. J. C. Solem,Am. J. Phys. 57, 278 (1989).

    Article  ADS  Google Scholar 

  19. See, for example, N. B. Delone and V. P. Krainov,Fundamentals of Nonlinear Optics of Atomic Gases, (Wiley, New York, 1988).

    Google Scholar 

  20. J. H. Shirley,Phys. Rev. B. 138, 979 (1965), Ya. B. Zel'dovichSov. Phys. JETP 24, 1006 (1967).

    Article  ADS  Google Scholar 

  21. L. C. Biedenharn, G. A. Rinker, and J. C. Solem,J. Opt. Soc. Am. B. 6, 221 (1989).

    Article  ADS  Google Scholar 

  22. W. Pauli,Z. Phys. 36, 336 (1926).

    Article  ADS  Google Scholar 

  23. L. C. Biedenharn and J. D. Louck,Angular Momentum in Quantum Physics, G.-C. Rota, ed., Vol. 8 of theEncyclopedia of Mathematics and Applications, (Addison-Wesley, Reading, Massachusetts, 1981); see Chap. 7, Secs. 4 and 6.

    Google Scholar 

  24. I. Sobelman,Atomic Spectra and Radiative Transitions, (Springer, Berlin, 1979), p. 253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solem, J.C. Variations on the Kepler problem. Found Phys 27, 1291–1306 (1997). https://doi.org/10.1007/BF02551529

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551529

Keywords

Navigation