Advertisement

Mathematics of Control, Signals and Systems

, Volume 1, Issue 3, pp 203–226 | Cite as

Persistency of excitation criteria for linear, multivariable, time-varying systems

  • I. M. Y. Mareels
  • M. Gevers
Article

Abstract

For continuous-time, multiple-input, multiple-output, linear systems, we present conditions under which the persistency of excitation of one regression vector implies the persistency of another regression vector derived from the first via a linear, dynamical transformation. We then introduce a definition of sufficient richness for vector input signals in the form of a persistency of excitation condition on a basis regression vector. Finally we establish input conditions which guarantee the persistency of excitation of a large class of regression vectors obtained from both time-invariant and time-varying systems.

Key words

Persistency of excitation System identification Adaptive control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    B. D. O. Anderson, Exponential stability of linear equations arising in adaptive identification,IEEE Trans. Automat. Control,22 (1977), 83–88.CrossRefGoogle Scholar
  2. [AB]
    B. D. O. Anderson, R. R. Bitmead, C. R. Johnson, Jr., P. V. Kokotovic, R. L. Kosut, I. M. Y. Mareels, L. Praly, and B. D. Riedle,Stability of Adaptive Systems: Passivity and Averaging Analysis, MIT Press, Cambridge, MA, 1986.Google Scholar
  3. [AJ]
    B. D. O. Anderson and C. R. Johnson, Jr., Exponential convergence of adaptive identification and control algorithms,Automatica,18 (1982), 1–13.CrossRefMathSciNetGoogle Scholar
  4. [BG]
    G. Bastin and M. Gevers, Stable adaptive observers for nonlinear time-varying systems,IEEE Trans. Automat. Control,33 (7) (1988) (to appear).Google Scholar
  5. [BS]
    E. W. Bai and S. Sastry, Persistency of excitation, sufficient richness and parameter convergence in discrete time adaptive control,Systems Control Lett.,6 (1985), 153–163.CrossRefMathSciNetGoogle Scholar
  6. [BS1]
    S. Boyd and S. Sastry, On parameter convergence in adaptive control,Systems Control Lett.,3 (1983), 311–319.CrossRefMathSciNetGoogle Scholar
  7. [BS2]
    S. Boyd and S. Sastry, Necessary and sufficient conditions for parameter convergence in adaptive control,Proceedings of the American Control Conference, San Diego, 1984, pp. 1584–1588.Google Scholar
  8. [C]
    W. A. Coppel,Dichotomies in Stability Theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin, 1978.zbMATHGoogle Scholar
  9. [D]
    S. Dasgupta, Adaptive Identification and Control, Ph.D. Dissertation, Australian National University, 1984.Google Scholar
  10. [DAT]
    S. Dasgupta, B. D. O. Anderson, and A. C. Tsoi, Input conditions for continuous time adaptive system problems,Proceedings of the 22nd IEEE Conference on Decision and Control, San Antonio, Tx, 1983, pp. 211–216.Google Scholar
  11. [GM]
    M. Green and J. B. Moore, Persistence of excitation in linear systems,Proceedings of the American Control Conference, Boston, 1984, pp. 412–417;Systems Control Lett.,7 (1986), 351–360.Google Scholar
  12. [GT]
    G. C. Goodwin and E. K. Teoh, Persistency of excitation in the presence of possibly unbounded signals,IEEE Trans. Automat. Control,30 (1985), 595–597.CrossRefMathSciNetGoogle Scholar
  13. [IK]
    P. A. Ioannou and P. V. Kokotovic,Adaptive Systems with Reduced Models, Lecture Notes in Control and Information Sciences, Vol. 47, Springer-Verlag, Berlin, 1983.zbMATHCrossRefGoogle Scholar
  14. [JA]
    R. M. Johnstone and B. D. O. Anderson, Exponential convergence of recursive least squares with exponential forgetting factor-adaptive control,Systems Control Lett.,2 (1982), 69–76.CrossRefMathSciNetGoogle Scholar
  15. [K]
    T. Kailath,Linear Systems, p. 657, Prentice-Hall, Englewood Cliffs, NJ, 1980.zbMATHGoogle Scholar
  16. [L]
    L. Ljung, Characterization of the Concept of Persistently Exciting Inputs in the Frequency Domain, Technical Report 7119, Department of Automatic Control, Lund Institute of Technology, 1971.Google Scholar
  17. [MB]
    I. M. Y. Mareels, R. R. Bitmead, M. Gevers, C. R. Johnson, Jr., R. L. Kosut, and M. A. Poubelle, How exciting can a signal really be?,Systems Control Lett.,8 (1987) 197–204.CrossRefGoogle Scholar
  18. [M]
    J. B. Moore, Persistence of excitation in extended least squares,IEEE Trans. Automat. Control,28 (1983), 60–68.CrossRefGoogle Scholar
  19. [MN]
    A. P. Morgan and K. S. Narendra, On the stability of non-autonomous differential equations ẋ=[A+B(t)]x with skew-symmetric matrixB(t), SIAM J. Control Optim.,15 (1977), 163–176.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • I. M. Y. Mareels
    • 1
  • M. Gevers
    • 2
  1. 1.Laboratorium voor RegeltechniekRijksuniversiteit GentGentBelgium
  2. 2.Laboratoire d’Automatique, de Dynamique et d’Analyse des SystèmesUniversité de Louvain La NeuveLouvain La NeuveBelgium

Personalised recommendations