Advertisement

Theoretical and Mathematical Physics

, Volume 122, Issue 3, pp 355–362 | Cite as

A simplified version of higher covariant derivative regularization

  • T. D. Bakeyev
Article

Abstract

A simplified version of the higher covariant derivative (HCD) regularization for the Yang-Mills theory is constructed. This makes the HCD method suitable for actual calculations.

Keywords

Gauge Invariance Dimensional Regularization External Line Invariant Regularization Local Counterterms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. 't Hooft and M. Veltman,Nucl. Phys.,10, 189 (1972).CrossRefGoogle Scholar
  2. 2.
    K. Wilson,Phys. Rev. D,10, 2445 (1974).CrossRefADSGoogle Scholar
  3. 3.
    B. W. Lee and J. Zinn-Justin,Phys. Rev. D,5, 3137 (1972).CrossRefADSGoogle Scholar
  4. 4.
    A. A. Slavnov,Theor. Math. Phys.,13, 1064 (1972).CrossRefGoogle Scholar
  5. 5.
    A. A. Slavnov,Theor. Math. Phys.,33, 977 (1977).CrossRefMathSciNetGoogle Scholar
  6. 6.
    T. D. Bakeyev and A. A. Slavnov,Mod. Phys. Lett. A,11, 1539 (1996).CrossRefADSGoogle Scholar
  7. 7.
    B. J. Warr,Ann. Phys.,183, 1 (1988).CrossRefADSGoogle Scholar
  8. 8.
    R. Sénéor, “Some remarks for the construction of YM theories,” in:Renormalization of Quantum Field Theories with Non-Linear Field Transformations (Lect. Notes Phys., Vol. 303) (P. Breitenlohner, D. Maison, and K. Sibold, eds.), Springer, Berlin (1988), p. 22.CrossRefGoogle Scholar
  9. 9.
    C. P. Martin and F. Ruiz Ruiz,Nucl. Phys. B,436, 645 (1995).CrossRefGoogle Scholar
  10. 10.
    A. A. Slavnov and L. D. Faddeev,Introduction to Quantum Gauge Field Theory [in Russian] (2nd ed.), Nauka, Moscow (1988); English transl. of 1st ed.: L. D. Faddeev and A. A. Slavnov,Gauge Fields: Introduction to Quantum Theory, Benjamin, London (1980).Google Scholar
  11. 11.
    M. Asorey and F. Falceto,Nucl. Phys. B,327, 427 (1989).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    M. Asorey and F. Falceto,Phys. Rev. D,54, 5290 (1996).CrossRefADSGoogle Scholar
  13. 13.
    P. I. Pronin and K. V. Stepanyantz,Phys. Lett. B,414, 117 (1997).CrossRefADSGoogle Scholar
  14. 14.
    J. C. Taylor,Nucl. Phys. B,33, 436 (1971).CrossRefADSGoogle Scholar
  15. 15.
    A. A. Slavnov,Theor. Math. Phys.,10, 99 (1972).CrossRefGoogle Scholar
  16. 16.
    P. I. Pronin and K. V. Stepanyantz, “New tensor package for REDUCE system,” in:New Computing Technique in Physics Research: 4 (B. Denby and D. Perred-Gallix, eds.), World Scientific, Singapore (1995), p. 263Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • T. D. Bakeyev
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations