Theoretical and Mathematical Physics

, Volume 124, Issue 1, pp 909–917 | Cite as

Multicomponent generalization of the hierarchy of the Landau-Lifshitz equation

  • I. Z. Golubchik
  • V. V. Sokolov


We construct a second-order 2N-component integrable system (with arbitrary N) whose spectral parameter lies on a curve of genus g=1+(N-3)2N−2. The odd-order flows admit N-component reductions, which for N=3 coincide with the odd-order flows of the hierarchy of the Landau-Lifshitz equation.


Spectral Curve Hamiltonian Structure Inverse Scattering Method Nonlinear SchrSdinger Equation Trigonometric Parameterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Degasperis and F. Calogero, “Reduction technique for matrix nonlinear evolution equations solvable by the spectral transform,” Preprint No. 151, Instituto di Fisica, Univ. di Roma, Rome (1979).Google Scholar
  2. 2.
    E. Date, M. Jimbo, M. Kashiwara and T. Miwa,J. Phys. A,16, 221–236 (1983)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    E. K. Sklyanin, “On the complete integrability of the Landau-Lifshitz equation, [in Russian],” Preprint No. E-3, Leningrad Branch Math. Inst. (LOMI), Leningrad (1979).MATHGoogle Scholar
  4. 4.
    A. E. Borovik,JETP Letters,28, 581–584 (1978).ADSGoogle Scholar
  5. 5.
    L. A. Takhtadzhyan and L. D. Faddeev,The Hamiltonian Methods in the Theory of Solitons [in Russian], Nauka, Moscow (1986); English transl.: L. D. Faddeev and L. A. Takhtajan, Berlin, Springer (1987).MATHGoogle Scholar
  6. 6.
    L. A. Bordag and A. B. Yanovski,J. Phys. A,28, 4007–4013 (1995).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    I. Z. Golubchik and V. V. Sokolov,Theor. Math. Phys.,120, 1019–1025 (1999).MathSciNetGoogle Scholar
  8. 8.
    S. V. Manakov,JETP,38, 248–253 (1973).Google Scholar
  9. 9.
    S. I. Svinolupov and V. V. Sokolov,Theor. Math. Phys.,100, 959–962 (1994).CrossRefMathSciNetGoogle Scholar
  10. 10.
    I. Z. Golubchik and V. V. Sokolov,Theor. Math. Phys.,112, 1097–1103 (1997).MathSciNetGoogle Scholar
  11. 11.
    V. G. Drinfeld and V. V. Sokolov, “Lie algebra and equations of the Korteweg-de Vries type [in Russian],” in:Review of Science and Technology: Modern Problems in Mathematics: Recent Developments (R. V. Gamkrelidze, ed.), vol. 24 (1984), pp. 81–180; English transl:J. Sov. Math.,30, 1975–2036 (1985).Google Scholar
  12. 12.
    A. G. Reyman and M. A. Semenov-Tian-Shansky,J. Sov. Math.,46, 1631–1640 (1989).CrossRefGoogle Scholar
  13. 13.
    I. T. Habibullin, V. V. Sokolov and R. I. Yamilov, “Multicomponent integrable systems and nonassociative structures,” in:Nonlinear Physics: Theory and Experiment: Nature, Structure, and Properties of Nonlinear Phenomena (E. Alfinito, M. Boiti, L. Martina, and F. Pempinelli, eds.), World Scientific, Singapore (1996), pp. 139–168.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • I. Z. Golubchik
    • 1
  • V. V. Sokolov
    • 2
  1. 1.Ufa Pedagogical InstituteUfaRussian
  2. 2.Center for Nonlinear Research, Landau Institute of Theoretical PhysicsRASMoscowRussia

Personalised recommendations