Foundations of Physics

, Volume 27, Issue 4, pp 559–577 | Cite as

On a possibility to find experimental evidence for the many-worlds interpretation of quantum mechanics

  • R. Plaga


The many-worlds interpretation of quantum mechanics predicts the formation of distinct parallel worlds as a result, of a quantum mechanical measurement. Communication among these parallel worlds would experimentally rule out alternatives to this interpretation. A possible procedure for “interworld” exchange of information and energy, using only state of the art quantum optical equipement, is described. A single ion is isolated from its environment in an ion trap. Then a quantum mechanical measurement with two discrete outcomes is performed on another system, resulting in the formation of two parallel worlds. Depending on the outcome of this measurement the ion is excited from only one of the parallel worlds before the ion decoheres through its interaction with the environment. A detection of this excitation in the other parallel world is direct evidence for the many-worlds interpretation. This method could have important practical applications in physics and beyond.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Omnès,Rev. Mod. Phys. 64, 339 (1992), is an exhaustive review of the field. W. H. Zurek,Phys. Today 44(10), 36 (1991), is a pedagocical introduction; see also letters about this article and Zurek’s reply in:Phys. Today 46(4), 13 (1993).CrossRefADSGoogle Scholar
  2. 2.
    W. Heisenberg,The Physicists Conception of Nature (Hutchinson, London, 1958).Google Scholar
  3. 3.
    L. E. Ballentine,Rev. Mod. Phys. 42, 358 (1970).CrossRefADSMATHGoogle Scholar
  4. 4.
    N. Bohr,Atomic Theory and the Description of Human Knowledge (Cambridge University Press, Cambridge, 1934), p. 19.Google Scholar
  5. 5.
    J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955), Chap. VI.MATHGoogle Scholar
  6. 6.
    W. H. Zurek,Prog. Theor. Phys. 89, 281 (1993), also available in e-Print archive under gr-qc 9402011, is an exhaustive review on the subject of decoherence; I followed Zurek’s standpoint in the present paper.CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    R. Omnès,Ann. Phys. (N.Y) 201, 354 (1990) (citation from p. 361).CrossRefADSGoogle Scholar
  8. 8.
    P. R. Holland and J. P. Vigier,Found. Phys. 18, 741 (1988). F. J. Belinfante,A Survey of Hidden-Variable Theories (Pergamon, Oxford, 1973).CrossRefADSGoogle Scholar
  9. 9.
    A review on the issue EPR correlations is: D. N. Mermin,Phys. Today 39(4), 38 (1985). The most recent experiments are: P. R. Rapster, J. G. Rarity, and P. C. M. Owens,Phys. Rev. Lett. 73, 1923 (1994); P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao,Phys. Rev. A. 47, R2427 (1993); T. E. Kiess, Y. H. Shih, A. V. Sergienko, and C. O. Alley,Phys. Rev. Lett. 71, 3893 (1993).Google Scholar
  10. 10.
    R. T. Jones and E. G. Adelberger,Phys. Rev. Lett. 72, 2675 (1994).CrossRefADSMathSciNetMATHGoogle Scholar
  11. 11.
    M. Gell-Mann and J. B. Hartle, inProceedings International Symposium Foundations of Quantum Mechanics, S. Kobayashi et al. eds. (The Physical Society of Japan, Tokyo, 1989), p. 321 the remark can be found in the discussion section in response to a question by P. Mittelstaedt.Google Scholar
  12. 12.
    R. B. Griffiths,Phys. Rev. Lett. 70, 2201 (1993). M. Gell-Mann and J. B. Hartle,Phys. Rev. D 47, 3345 (1993). Exhaustive and pedagogic lectures can be found in: J. B. Hartle, inQuantum Cosmology and Baby Universes, S. Coleman,et al., eds. (World Scientific, Singapore, 1991), p. 67.CrossRefADSMathSciNetMATHGoogle Scholar
  13. 13.
    H. Everett III, inThe Many-Worlds Interpretation of Quantum Mechnics, B. S. DeWitt and N. Graham, eds. (Princeton University Press, Princeton, 1973), p. 3. H. Everett III,Rev. Mod. Phys. 29, 454 (1957). Note that the first reference constitutes the original work of Everett. It contains, a clear statement of the incompatibility of his interpretation with the Copenhagen interpetation in the discussion section on pp. 109–119. This opinion appears only in a much weakened form in the journal article.Google Scholar
  14. 14.
    B. S. DeWitt,Phys. Today 23(9), 30 (1970). B. S. DeWitt, inFondamenti, di Meccanica Quantisitica, B. D’Espagnat, ed. (Academic, New York, 1971), p. 211; here DeWitt uses the expression “many-universe interpretation,” which can give rise to misunderstandings in my opinion.CrossRefGoogle Scholar
  15. 15.
    Occasionally the MWI is interpreted in a way in which the “splitting” requires some new mechanism outside of known physics; see e.g., M. A. B. Whitaker,J. Phys. A 18, 253 (1985). The assumption of such a mechanism leads to various problems with the MWI as discussed in this reference. I hold the view that one is led inevitably (and without further mechanisms) to the MWI if one assumes that the Schrödinger equation is a complete and objective description of reality and takes into account decoherence. A similar view is voiced by Zurek who finds the MWI “unsatisfying”; however, see the discussion section to his article: W.H. Zurek, inConceptual Problems of Quantum Gravity, A. Ashtekar and J. Stachel, eds. (Birkhäuser, Boston, 1991), p. 43.CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    H. D. Zeh,Found. Phys. 3, 109 (1973).CrossRefADSGoogle Scholar
  17. 17.
    H. D. Zeh,Phys. Lett. A 172, 189 (1993).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    A. Albrecht,Phys. Rev. D 48, 3768 (1993).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    D. Deutsch,Int. J. Theor. Phys. 24, 1 (1985).CrossRefMathSciNetGoogle Scholar
  20. 20.
    J. Clarke et al.,Science 239, 992 (1988).CrossRefADSGoogle Scholar
  21. 21.
    H. Dehmelt,Am. J. Phys. 58, 17 (1990).CrossRefADSGoogle Scholar
  22. 22.
    W. H. Zurek, S. Habib, and J. P. Paz,Phys. Rev. Lett. 70, 1187 (1993).CrossRefADSGoogle Scholar
  23. 23.
    M. O. Scully and H. Walther,Phys. Rev. A 39, 5229 (1989).CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    R. H. Dicke,Am. J. Phys. 49, 925 (1981). R. H. Dicke,Found. Phys.,16, 107 (1986).CrossRefADSGoogle Scholar
  25. 25.
    M. Tegmark,Found. Phys. Lett. 6, 571 (1993).CrossRefGoogle Scholar
  26. 26.
    R. A. Harris and L. Stodolsky,Phys. Lett. B 116, 464 (1982).CrossRefADSGoogle Scholar
  27. 27.
    L. Stodolsky, inQuantum Coherence, J. S. Anandan, ed. (World Scientific, Singapore, 1990), p. 320.Google Scholar
  28. 28.
    G. Raffelt, G. Sigl and L. Stodolsky,Phys. Rev. Lett. 70, 2363 (1993).CrossRefADSGoogle Scholar
  29. 29.
    E. Joos and H. D. Zeh,Z. Phys. B. 59, 223 (1985).CrossRefADSGoogle Scholar
  30. 30.
    L. I. Schiff,Quantum Mechanics (McGraw-Hill, Singapore, 1985), 3rd edn. Chap. 14,Google Scholar
  31. 31.
    A. O. Caldeira and A. J. Legget,Phys. Rev. A 31, 1059 (1985).CrossRefADSGoogle Scholar
  32. 32.
    W. G. Unruh and W. H. Zurek,Phys. Rev. D 40, 1071 (1989).CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    D. N. Page and C. D. Geilker,Phys. Rev. Lett. 47, 979 (1981).CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    W. M. Itano et al.,Phys. Rev. A 47, 3354 (1993).CrossRefGoogle Scholar
  35. 35.
    M. Sargent, III, M. O. Scully, and W. E. Lamb,Laser Physics (Addison-Wesley, Reading, Massachusetts, 1974), p. 27.Google Scholar
  36. 36.
    R. B. Bernstein,J. Chem. Phys. 34, 361 (1961).CrossRefADSGoogle Scholar
  37. 37.
    F. Diedrich and H. Walther,Phys. Rev. Lett. 58, 203 (1987).CrossRefADSGoogle Scholar
  38. 38.
    S. L. Gilbert et al.,Phys. Rev. Lett. 60, 2022 (1988),CrossRefADSGoogle Scholar
  39. 39.
    E. L. Hill,Rev. Mod. Phys. 23, 253 (1951).CrossRefADSMATHGoogle Scholar
  40. 40.
    A. C. Elitzur and L. Vaidmann,Found. Phys. 23, 987 (1993).CrossRefADSGoogle Scholar
  41. 41.
    J. Polchinski,Phys. Rev. Lett. 66, 397 (1991).CrossRefADSMathSciNetMATHGoogle Scholar
  42. 42.
    M. Gell-Mann and J. B. Hartle, “Equivalent sets of histories and multiple quasiclassical domains,” preprint, University of California at Santa Barbara UCSBTH-94-09 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • R. Plaga
    • 1
  1. 1.MunichGermany

Personalised recommendations