Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The emergence of a Kaluza-Klein microgenometry from the invariants of optimally Euclidean Lorentzian spaces

  • 69 Accesses

  • 10 Citations

Abstract

It is shown that relativistic spacetimes can be viewed as Finslerian spaces endowed with a positive definite distance (ω0, mod ωi) rather than as pariah, pseudo-Riemannian spaces. Since the pursuit of better implementations of “Euclidicity in the small” advocates absolute parallelism, teleparallel nonlinear Euclidean (i.e., Finslerian) connections are scrutinized.

The fact that (ωμ, ω0 i) is the set of horizontal fundamental 1-forms in the Finslerian fibration implies that it can be used in principle for obtainingcompatible new structures. If the connection is teleparallel, a Kaluza-Klein space (KKS) indeed emerges from (ωμ, ω0 i), endowed ab initio with intertwined tangent and cotangent Clifford algebras. A deeper level of Kähler calculus, i.e., the language of Dirac equations, thus emerges. This makes the existance of an intimate relationship between classical differential geometry and quantum theory become ever more plausible. The issue of a geometric canonical Dirac equation is also raised.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    É. Cartan,L’Enseignement Math. 26, 200 (1927). Reprinted inOeuvres Complètes (Éditions du CNRS, Paris, 1984), Vol. I.

  2. 2.

    É. Cartan,C. R. Congrès Intern. Oslo 1, 92 (1936). Reprinted inOeuvres Complètes, Vol. III, Part 2.

  3. 3.

    É. Cartan,Bull. Sci. Math. 48, 294 (1924).Oeuvres Complètes, Vol. III, Part 1.

  4. 4.

    É. Cartan,Ann. É. Norm 40, 325 (1923). Reprinted inOeuvres Complètes, Vol. III, Part 1.

  5. 5.

    A. Einstein,Ann. l’Inst. H. Poincaré 1, 1 (1930).

  6. 6.

    É. Cartan,Les Espaces de Finsler (Actualités Scientifiques et Industrielles79 (1934), reprinted 1971, Hermann, Paris).

  7. 7.

    Fl. J. G. Vargas and D. G. Torr,J. Math. Phys. 34 (10), 4898 (1993).

  8. 8.

    F3. J. G. Vargas and D. G. Torr,Gen. Relativ. Gravit. 28, 451 (1996).

  9. 9.

    F2. J. G. Vargas and D. G. Torr,Gen. Relativ. Gravit. 27, 629 (1995).

  10. 10.

    R. Miron,J. Math. Kyoto Univ. 23, 219 (1983).

  11. 11.

    S.-S. Chern,Sci. Rep. Natl. Tsing Hua Univ. 5, 85 (1948).

  12. 12.

    M. Matsumoto,Foundations of Finlser Geometry and Special Finsler Spaces (Kaiseisha, Shigaken, 1986). A Bejancu,Finsler Geometry and Applications (Ellis Horwood, Chichester, England, 1990). R. Miron and M. Anastasiei,The Geometry of Lagrange Spaces: Theory and Applications (Kluwer, Dordrecht, 1994).

  13. 13.

    F4. J. G. Vargas and D. G. Torr,Cont. Math. 196, 301 (1996).

  14. 14.

    O. Varga,Acta Sci. Math. Szeged. Univ. 10, 149 (1943).

  15. 15.

    R. Debever, editor,Élie Cartan-Albert Einstein, Letters on Absolute Parallelism (Princeton University Press, Princeton, 1979).

  16. 16.

    J. G. Vargas,Found. Phys. 16, 1231 (1986).

  17. 17.

    A. Einstein,Geometry and Experience (Lecture before the Prussian Academy of Sciences, January 27). SeeIdeas and Opinions (Crown Publishers, New York, 1982), pp. 232–246.

  18. 18.

    F5. J. G. Vargas, and D. G. Torr,The Construction of Teleparallel Finsler Connections and the Emergence of a New Concept of Metric Compatibility, preprint (1996).

  19. 19.

    S.-S. Chern,C. R. Acad. Sci. Paris 314 (1), 757 (1992).

  20. 20.

    E. Kähler,Abh. Dtsch. Akad. Wiss. Berlin, Kl. Math. Phys. Tech. 4, 1 (1960)Rendiconti di Matematica 21 (3–4), 425 (1962).

  21. 21.

    D. Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966). AlsoNew Foundations for Classical Mechanics (Kluwer, Boston, 1986).

  22. 22.

    J. G. Vargas, D. G. Torr, and A. Lecompte,Found. Phys. 22, 379 (1992).

  23. 23.

    É. Cartan,J. Math. Pures Appl. 1, 141 (1922). Reprinted inOeuvres Complètes, Vol. III, Part 1.

  24. 24.

    J. G. Vargas and D. G. Torr,Gen. Relativ. Gravit 23, 713 (1991).

  25. 25.

    S. K. Donaldson and P. B. Kronheimer,The Geometry of Four-Manifolds (Clarendon Press, Oxford, 1990).

  26. 26.

    A. Einstein,On the Methods of Theoretical Physics (The Herbert Spencer Lecture, delivered at Oxford). Printed inIdeas and Opinions (Crown Publishers, New York, 1982), pp. 270–276.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vargas, J.G., Torr, D.G. The emergence of a Kaluza-Klein microgenometry from the invariants of optimally Euclidean Lorentzian spaces. Found Phys 27, 533–558 (1997). https://doi.org/10.1007/BF02550676

Download citation

Keywords

  • Dirac Equation
  • Riemannian Geometry
  • Clifford Algebra
  • Riemannian Space
  • Finsler Space