Czechoslovak Journal of Physics

, Volume 46, Supplement 6, pp 3089–3096 | Cite as

Unconventional pairing in heavy Fermion metals

  • J. A. Sauls
  • D. Rainer
Plenary and Invited Papers Superconductivity

Abstract

The Fermi-liquid theory of superconductivity is applicable to a broad range of systems that are candidates for unconventional pairing,e.g. heavy fermion, organic and cuprate superconductors. Ginzburg-Landau theory provides a link between the thermodynamic properties of these superconductors and Fermi-liquid theory. The multiple superconducting phases of UPt3 illustrate the role that is played by the Ginzburg-Landau theory in interpreting these novel superconductors. Fundamental differences between unconventional and conventional anisotropic superconductors are illustrated by the unique effects that impurities have on the low-temperature transport properties of unconventional superconductors. For special classes of unconventional superconductors the low-temperature transport coefficients areuniversal, i.e. independent of the impurity concentration and scattering phase shift. The existence of a universal limit depends on the symmetry of the order parameter and is achieved at low temperatures κBT ≪ γ ≪ Δ0, where γ is the bandwidth of the impurity induced Andreev bound states. In the case of UPt3 thermal conductivity measurements favor anE1g orE2u ground state. Measurements at ultra-low temperatures should distinguish different pairing states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. W. Anderson and P. Morel, Phys. Rev.123, 1911 (1961).CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett.28, 885 (1972).CrossRefADSGoogle Scholar
  3. [3]
    F. Steglichet al., Phys. Rev. Lett.43, 1892 (1979).CrossRefADSGoogle Scholar
  4. [4]
    H. Ottet al., Jpn. J. Appl. Phys.S 26, 1882 (1987).MathSciNetGoogle Scholar
  5. [5]
    N. E. Bickers, D. J. Scalapino, and R. T. Scalettar, Int. Journ. Mod. Phys.B1, 687 (1987).CrossRefADSGoogle Scholar
  6. [6]
    P. Anderson, Phys. Rev.B30, 4000 (1984).CrossRefADSGoogle Scholar
  7. [7]
    G. Volovik and L. Gor'kov, Sov. Phys. JETP Lett.39, 674 (1984).Google Scholar
  8. [8]
    M. Takigawa, P. C. Hammel, R. H. Heffner, and Z. Fisk, Phys. Rev.B39, 7371 (1989).CrossRefADSGoogle Scholar
  9. [9]
    D. Scalapino, Phys. Rep.250, 329 (1995).CrossRefGoogle Scholar
  10. [10]
    M. J. Graf, M. Palumbo, D. Rainer, and J. A. Sauls, Phys. Rev.B52, 10588 (1995).CrossRefADSGoogle Scholar
  11. [11]
    M. J. Graf, S.-K. Yip, and J. A. Sauls, J. Low Temp. Phys.—Rapid Comm.102, 367 (1996).CrossRefADSGoogle Scholar
  12. [12]
    R. Heffner and M. Norman, Comm. Cond. Matt. Phys.17, 361 (1996).Google Scholar
  13. [13]
    G. Brulset al., Phys. Rev. Lett.65, 2294 (1990).CrossRefADSGoogle Scholar
  14. [14]
    S. Adenwallaet al., Phys. Rev. Lett.65, 2298 (1990).CrossRefADSGoogle Scholar
  15. [15]
    R. Joynt, Sup. Sci. Tech.1, 1210 (1988).Google Scholar
  16. [16]
    D. Hess, T. Tokuyasu, and J. A. Sauls, J. Phys. Cond. Matt.1, 8135 (1989).CrossRefADSGoogle Scholar
  17. [17]
    K. Machida and M. Ozaki, J. Phys. Soc. Jpn58, 2244 (1989).CrossRefADSGoogle Scholar
  18. [18]
    I. Luk'yanchuk, J. de Phys.I1, 1155 (1991).ADSGoogle Scholar
  19. [19]
    K. Machida and M. Ozaki, Phys. Rev. Lett.66, 3293 (1991).CrossRefADSGoogle Scholar
  20. [20]
    D. Chen and A. Garg, Phys. Rev. Lett.70, 1689 (1993).CrossRefADSGoogle Scholar
  21. [21]
    J. Sauls, Adv. Phys.43, 113 (1994).CrossRefADSGoogle Scholar
  22. [22]
    M. Zhitomirskii and I. Luk'yanchuk, Sov. Phys. JETP Lett.58, 131 (1993).Google Scholar
  23. [23]
    B. Shivaram, T. Rosenbaum, and D. Hinks. Phys. Rev. Lett.57, 1259 (1986).CrossRefADSGoogle Scholar
  24. [24]
    R. Joynt, V. Mineev, G. Volovik, and Zhitomirskii, Phys. Rev.B42, 2014 (1990).CrossRefADSGoogle Scholar
  25. [25]
    G. Aeppliet al., Phys. Rev. Lett.60, 615 (1988).CrossRefADSGoogle Scholar
  26. [26]
    T. Trappmann, H. v. Löhneysen, and L. Taillefer, Phys. Rev.B43, 13714 (1991).CrossRefADSGoogle Scholar
  27. [27]
    S. Hayden, L. Taillefer, C. Vettier and J. Flouquet, Phys. Rev.B46, 8675 (1992).CrossRefADSGoogle Scholar
  28. [28]
    C. Choi and J. Sauls, Phys. Rev. Lett.66, 484 (1991).CrossRefADSGoogle Scholar
  29. [29]
    K. Park and R. Joynt, Phys. Rev.B 53, 12346 (1996).CrossRefADSGoogle Scholar
  30. [30]
    B. Lussier. et al., unpublished (1996).Google Scholar
  31. [31]
    G. Eilenberger, Z. Physik214, 195 (1968).CrossRefADSGoogle Scholar
  32. [32]
    A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP28, 1200 (1969).ADSGoogle Scholar
  33. [33]
    G. M. Eliashberg, Sov. Phys. JETP34, 668 (1972).ADSGoogle Scholar
  34. [34]
    J. W. Serene and D. Rainer, Phys. Rep.101, 221 (1983).CrossRefADSGoogle Scholar
  35. [35]
    A. I. Larkin and Y. N. Ovchinnikov, inNonequilibrium Superconductivity, edited by D. Langenberg and A. Larkin (Elsevier Science Publishers, Amsterdam, 1986), pp. 493–542.Google Scholar
  36. [36]
    D. Rainer and J. A. Sauls, inSuperconductivity: From Basic Physics to New Developments, edited by P. N. Butcher and Y. Lu (World Scientific, Singapore, 1995), pp. 45–78.Google Scholar
  37. [37]
    L. D. Landau, Sov. Phys. JETP5, 70 (1959).Google Scholar
  38. [38]
    G. M. Eliashberg, Zh. Eskp. Teor. Fiz.15, 1151 (1962).Google Scholar
  39. [39]
    L. J. Buchholtz and G. Zwicknagl, Z. Phys.B23, 5788 (1981).Google Scholar
  40. [40]
    C. R. Hu, Phys. Rev. Lett.72, 1526 (1994).CrossRefADSGoogle Scholar
  41. [41]
    Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett.74, 3451 (1995).CrossRefADSGoogle Scholar
  42. [42]
    A. Andreev, Sov. Phys. JETP19, 1228 (1964).Google Scholar
  43. [43]
    L. Buchholtz, M. Palumbo, D. Rainer, and J. A. Sauls, J. Low Temp. Phys.101, 1099 (1995).CrossRefADSGoogle Scholar
  44. [44]
    C. Choi and P. Muzikar, Phys. Rev.B 36, 54 (1987).CrossRefADSGoogle Scholar
  45. [45]
    M. J. Graf, S.-K. Yip, J. A. Sauls, and D. Rainer, Phys. Rev.B53, 15147 (1996).CrossRefADSGoogle Scholar
  46. [46]
    B. Lussier, B. Ellman, and L. Taillefer, Phys. Rev.B 53, 5145 (1996).CrossRefADSGoogle Scholar
  47. [47]
    M. Norman, PhysicaC194, 205 (1992).CrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Acad. Sci. CR 1996

Authors and Affiliations

  • J. A. Sauls
    • 1
  • D. Rainer
    • 2
  1. 1.Department of Physics & AstronomyNorthwestern UniversityEvanstonUSA
  2. 2.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations