Advertisement

Czechoslovak Journal of Physics

, Volume 46, Supplement 6, pp 3089–3096 | Cite as

Unconventional pairing in heavy Fermion metals

  • J. A. Sauls
  • D. Rainer
Plenary and Invited Papers Superconductivity

Abstract

The Fermi-liquid theory of superconductivity is applicable to a broad range of systems that are candidates for unconventional pairing,e.g. heavy fermion, organic and cuprate superconductors. Ginzburg-Landau theory provides a link between the thermodynamic properties of these superconductors and Fermi-liquid theory. The multiple superconducting phases of UPt3 illustrate the role that is played by the Ginzburg-Landau theory in interpreting these novel superconductors. Fundamental differences between unconventional and conventional anisotropic superconductors are illustrated by the unique effects that impurities have on the low-temperature transport properties of unconventional superconductors. For special classes of unconventional superconductors the low-temperature transport coefficients areuniversal, i.e. independent of the impurity concentration and scattering phase shift. The existence of a universal limit depends on the symmetry of the order parameter and is achieved at low temperatures κ B T ≪ γ ≪ Δ0, where γ is the bandwidth of the impurity induced Andreev bound states. In the case of UPt3 thermal conductivity measurements favor anE 1g orE 2u ground state. Measurements at ultra-low temperatures should distinguish different pairing states.

Keywords

Fermi Surface Heavy Fermion Scatter Phase Shift Unconventional Superconductor Level Repulsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. W. Anderson and P. Morel, Phys. Rev.123, 1911 (1961).CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett.28, 885 (1972).CrossRefADSGoogle Scholar
  3. [3]
    F. Steglichet al., Phys. Rev. Lett.43, 1892 (1979).CrossRefADSGoogle Scholar
  4. [4]
    H. Ottet al., Jpn. J. Appl. Phys.S 26, 1882 (1987).MathSciNetGoogle Scholar
  5. [5]
    N. E. Bickers, D. J. Scalapino, and R. T. Scalettar, Int. Journ. Mod. Phys.B1, 687 (1987).CrossRefADSGoogle Scholar
  6. [6]
    P. Anderson, Phys. Rev.B30, 4000 (1984).CrossRefADSGoogle Scholar
  7. [7]
    G. Volovik and L. Gor'kov, Sov. Phys. JETP Lett.39, 674 (1984).Google Scholar
  8. [8]
    M. Takigawa, P. C. Hammel, R. H. Heffner, and Z. Fisk, Phys. Rev.B39, 7371 (1989).CrossRefADSGoogle Scholar
  9. [9]
    D. Scalapino, Phys. Rep.250, 329 (1995).CrossRefGoogle Scholar
  10. [10]
    M. J. Graf, M. Palumbo, D. Rainer, and J. A. Sauls, Phys. Rev.B52, 10588 (1995).CrossRefADSGoogle Scholar
  11. [11]
    M. J. Graf, S.-K. Yip, and J. A. Sauls, J. Low Temp. Phys.—Rapid Comm.102, 367 (1996).CrossRefADSGoogle Scholar
  12. [12]
    R. Heffner and M. Norman, Comm. Cond. Matt. Phys.17, 361 (1996).Google Scholar
  13. [13]
    G. Brulset al., Phys. Rev. Lett.65, 2294 (1990).CrossRefADSGoogle Scholar
  14. [14]
    S. Adenwallaet al., Phys. Rev. Lett.65, 2298 (1990).CrossRefADSGoogle Scholar
  15. [15]
    R. Joynt, Sup. Sci. Tech.1, 1210 (1988).Google Scholar
  16. [16]
    D. Hess, T. Tokuyasu, and J. A. Sauls, J. Phys. Cond. Matt.1, 8135 (1989).CrossRefADSGoogle Scholar
  17. [17]
    K. Machida and M. Ozaki, J. Phys. Soc. Jpn58, 2244 (1989).CrossRefADSGoogle Scholar
  18. [18]
    I. Luk'yanchuk, J. de Phys.I1, 1155 (1991).ADSGoogle Scholar
  19. [19]
    K. Machida and M. Ozaki, Phys. Rev. Lett.66, 3293 (1991).CrossRefADSGoogle Scholar
  20. [20]
    D. Chen and A. Garg, Phys. Rev. Lett.70, 1689 (1993).CrossRefADSGoogle Scholar
  21. [21]
    J. Sauls, Adv. Phys.43, 113 (1994).CrossRefADSGoogle Scholar
  22. [22]
    M. Zhitomirskii and I. Luk'yanchuk, Sov. Phys. JETP Lett.58, 131 (1993).Google Scholar
  23. [23]
    B. Shivaram, T. Rosenbaum, and D. Hinks. Phys. Rev. Lett.57, 1259 (1986).CrossRefADSGoogle Scholar
  24. [24]
    R. Joynt, V. Mineev, G. Volovik, and Zhitomirskii, Phys. Rev.B42, 2014 (1990).CrossRefADSGoogle Scholar
  25. [25]
    G. Aeppliet al., Phys. Rev. Lett.60, 615 (1988).CrossRefADSGoogle Scholar
  26. [26]
    T. Trappmann, H. v. Löhneysen, and L. Taillefer, Phys. Rev.B43, 13714 (1991).CrossRefADSGoogle Scholar
  27. [27]
    S. Hayden, L. Taillefer, C. Vettier and J. Flouquet, Phys. Rev.B46, 8675 (1992).CrossRefADSGoogle Scholar
  28. [28]
    C. Choi and J. Sauls, Phys. Rev. Lett.66, 484 (1991).CrossRefADSGoogle Scholar
  29. [29]
    K. Park and R. Joynt, Phys. Rev.B 53, 12346 (1996).CrossRefADSGoogle Scholar
  30. [30]
    B. Lussier. et al., unpublished (1996).Google Scholar
  31. [31]
    G. Eilenberger, Z. Physik214, 195 (1968).CrossRefADSGoogle Scholar
  32. [32]
    A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP28, 1200 (1969).ADSGoogle Scholar
  33. [33]
    G. M. Eliashberg, Sov. Phys. JETP34, 668 (1972).ADSGoogle Scholar
  34. [34]
    J. W. Serene and D. Rainer, Phys. Rep.101, 221 (1983).CrossRefADSGoogle Scholar
  35. [35]
    A. I. Larkin and Y. N. Ovchinnikov, inNonequilibrium Superconductivity, edited by D. Langenberg and A. Larkin (Elsevier Science Publishers, Amsterdam, 1986), pp. 493–542.Google Scholar
  36. [36]
    D. Rainer and J. A. Sauls, inSuperconductivity: From Basic Physics to New Developments, edited by P. N. Butcher and Y. Lu (World Scientific, Singapore, 1995), pp. 45–78.Google Scholar
  37. [37]
    L. D. Landau, Sov. Phys. JETP5, 70 (1959).Google Scholar
  38. [38]
    G. M. Eliashberg, Zh. Eskp. Teor. Fiz.15, 1151 (1962).Google Scholar
  39. [39]
    L. J. Buchholtz and G. Zwicknagl, Z. Phys.B23, 5788 (1981).Google Scholar
  40. [40]
    C. R. Hu, Phys. Rev. Lett.72, 1526 (1994).CrossRefADSGoogle Scholar
  41. [41]
    Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett.74, 3451 (1995).CrossRefADSGoogle Scholar
  42. [42]
    A. Andreev, Sov. Phys. JETP19, 1228 (1964).Google Scholar
  43. [43]
    L. Buchholtz, M. Palumbo, D. Rainer, and J. A. Sauls, J. Low Temp. Phys.101, 1099 (1995).CrossRefADSGoogle Scholar
  44. [44]
    C. Choi and P. Muzikar, Phys. Rev.B 36, 54 (1987).CrossRefADSGoogle Scholar
  45. [45]
    M. J. Graf, S.-K. Yip, J. A. Sauls, and D. Rainer, Phys. Rev.B53, 15147 (1996).CrossRefADSGoogle Scholar
  46. [46]
    B. Lussier, B. Ellman, and L. Taillefer, Phys. Rev.B 53, 5145 (1996).CrossRefADSGoogle Scholar
  47. [47]
    M. Norman, PhysicaC194, 205 (1992).CrossRefADSGoogle Scholar

Copyright information

© Institute of Physics, Acad. Sci. CR 1996

Authors and Affiliations

  • J. A. Sauls
    • 1
  • D. Rainer
    • 2
  1. 1.Department of Physics & AstronomyNorthwestern UniversityEvanstonUSA
  2. 2.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations