Czechoslovak Journal of Physics

, Volume 46, Supplement 6, pp 3056–3062

Magnetotransport of 2D electrons on liquid helium in the fluid and solid phases

  • A. Blackburn
  • K. Djerfi
  • M. I. Dykman
  • C. Fang-Yen
  • P. Fozooni
  • A. Kristensen
  • M. J. Lea
  • P. J. Richardson
  • A. Santrich-Badal
  • R. W. van der Heijden
Plenary and Invited Papers Quantum Fluids and Solids

DOI: 10.1007/BF02548110

Cite this article as:
Blackburn, A., Djerfi, K., Dykman, M.I. et al. Czech J Phys (1996) 46(Suppl 6): 3056. doi:10.1007/BF02548110

Abstract

The magnetoconductivity σ(B) in the two-dimensional (2D) nondegenerate electron fluid and 2D solid has been analyzed theoretically and investigated experimentally, from 60 mK to 1.3 K in magnetic fieldsB up to 8 Tesla. In the fluid phase, σ(B) is described by the Drude model in weak to moderately strong classical fields, including the range βB≫1. At higher fields (depending on the density σ(B) is nonmonotonous and diplays a minimum. This behavior is due to many-electron effects, which can be described in terms of cyclotron orbit diffusion controlled by an internal fluctuational electric field. The squared internal field derived from experiments is in good agreement with computer simulations. In the solid phase electron transport becomes strongly non-linear even for weak driving voltagesV0. Experimentally we determine, from the losses, the effective AC Corbino conductivity at a frequencyf. We find that σ(BαfV0/B forV0 below some threshold voltageVc. In this region the Hall velocity υH approaches the ripplon phase velocityv1=w(G1)/G1 at the first reciprocal lattice vectorG1 of the electron solid. We suggest that this behaviour is due to to a resonant drag force from the Bragg-Cerenkov radiation of coherent ripplons by the moving crystal.

Copyright information

© Institute of Physics, Acad. Sci. CR 1996

Authors and Affiliations

  • A. Blackburn
    • 1
  • K. Djerfi
    • 2
  • M. I. Dykman
    • 3
  • C. Fang-Yen
    • 3
  • P. Fozooni
    • 2
  • A. Kristensen
    • 2
  • M. J. Lea
    • 2
  • P. J. Richardson
    • 2
  • A. Santrich-Badal
    • 2
  • R. W. van der Heijden
    • 4
  1. 1.Department of Electronics and Computer ScienceUniversity of SouthamptonUK
  2. 2.Department of Physics, Royal HollowayUniversity of LondonEghamUK
  3. 3.Department of Physics and AstronomyMichigan State UniversityUSA
  4. 4.Department of PhysicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations