International Journal of Primatology

, Volume 13, Issue 4, pp 379–393 | Cite as

Differences in male and female macaque dispersal lead to contrasting distributions of nuclear and mitochondrial DNA variation

  • Don J. Melnick
  • Guy A. Hoelzer


Male macaques typically leave their natal group before sexual maturity, while females remain for life. Thus genes flow between groups and populations almost solely through male transfer. This asymmetrical dispersal pattern, affects the distribution of variation in the nuclear and mitochondrial genomes differently Nuclear genetic variation, measured by allozyme polymorphisms, is relatively evenly distributed throughout the populations of a macaque species, provided there are no major geographical barriers. Conversely the distribution of maternally inherited mitochondrial DNA (mtDNA) diversity is characterized by local homogeneity and large interpopulational differences. Because of differences in inheritance, dispersal, and population structure, the information contained in nuclear and mitochondrial genomes is best used to address different types of behavioral, genetic, and conservation questions.


allozymes mitochondrial DNA population structure social organization macaques 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashley, M. V., Melnick, D. J., and Western, D. (1989). Conservation genetics of the black rhinoceros (Diceros bicornis). I. Evidence from the mitochondrial DNA of three populations.Conserv. Biol. 4: 71–77.CrossRefGoogle Scholar
  2. Avise, J. C. (1986). Mitochondrial DNA and the evolutionary genetics of higher animals.Phil. Trans. R. soc. Lond. 312: 325–342.Google Scholar
  3. Avise, J. C. (1989). A role for molecular genetics in the recognition and conservation of endangered species. TREE 4: 279–281.Google Scholar
  4. Avise, J. C., Neigel, J. E., and Arnold, J. (1984). Demographic influences on mitochondrial DNA lineage, survivorship in animal populations.J. Mol. Evol. 20: 99–105.PubMedCrossRefGoogle Scholar
  5. Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders N. C. (1987). Intraspecific phylogeography: The mitochondrial bridge between population, genetics and systematics.Annu. Rev. Ecol. Syst. 18: 489–522.Google Scholar
  6. Brown, W. M. (1983). Evolution of animal, mitochondrial DNA. In Nei, M., and Koehn, R. K. (eds),Evolution of Genes and Proteins, Sinauer Press, Sunderland, MA, pp. 62–88.Google Scholar
  7. Brown, W. M., George, M., and Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA.Proc. Natl. Acad. Sci. USA 76: 1967–1971.PubMedCrossRefGoogle Scholar
  8. Clutton-Brock, T. H. (1989). Female transfer and inbreeding avoidance in social mammals.Nature 337: 70–72.PubMedCrossRefGoogle Scholar
  9. Darga, L. L. (1975).Immunological and Electrophoretic Investigations of Catarrhine Evolution, Ph.D. thesis, Wayne State University, Detroit, MI.Google Scholar
  10. Dittus, W. P. J., (1975). Population dynamics of the toque monkey,Macaca sinica. In Tuttle, R. H. (ed.),Socioecology and Psychology of Primates, Mouton, The Hague, pp. 125–151.Google Scholar
  11. Dowling, T. E., Moritz, C., and Palmer, J. D. (1990). Nucleic acids II: Restriction site analysis. In Hillis, D., and Moritz, C. (eds.),Molecular Systematics, Sinauer Press, Sunderland, MA, pp. 250–317.Google Scholar
  12. Ehrlich, P. R., and Raven, P. H. (1969). Differentiation of populations.Science 165: 1228–1232.PubMedCrossRefGoogle Scholar
  13. Fooden, J. (1988). Taxonomy and evolution of theSinica group of macaques. 6. Interspecific comparisons and synthesis.Field. Zool. 45: 1–44.Google Scholar
  14. Greenwood, P. J. (1980). Mating systems, philopatry, and dispersal in birds and mammals.Anim. Behav. 28: 1140–1162.CrossRefGoogle Scholar
  15. Harihara, S., Saitou, N., Hirai, M., Aoto, N., Terao, K., Cho, F., Honjo, S., and Omoto, K., (1988). Differentiation of mitochondrial DNA types inMacaca fascicularis.Primates 29: 117–127.CrossRefGoogle Scholar
  16. Hayasaka, K., Horai, S., Gojobori, T., Shotake, T. Nozawa, K. and Matsunaga E. (1988), Phylogenetic relationships among Japanese, rhesus, Formosan, and crab-eating monkeys, inferred from restriction-enzyme analysis of mitochondrial DNAs.Mol. Biol. Evol. 5:270–281.PubMedGoogle Scholar
  17. Hoelzer, G. A., Wallman, J., and Melnick, D. J. (1991a). The effects of social and geographic structure on the evolutionary dynamics of mitochondrial DNA (unpublished manuscript).Google Scholar
  18. Hoelzer, G. A., Ashley, M. V., Dittus, W. P. J., and Melnick D. J. (1991b). Mitochondrial DNA variation and the matenal phylogeny of toque monkey social groups in Polonnaruwa, Sri Lanka (unpublished manuscript).Google Scholar
  19. Honeycutt, R., and Wheeler, W. (1989). Mitochondrial DNA: Variation in humans and primates, In Dutta S. K., and Winter, W. (eds).DNA Systematics: Human and Higher Primates, CRC Press, Boca Raton, FL.Google Scholar
  20. Lindburg, D. G. (1969). Rhesus monkeys: Mating season mobility of adult males.Science 166: 1176–1178.CrossRefGoogle Scholar
  21. Melnick, D. J. (1988). The genetic structure of a primate species: Rhesus macaques, and other cercopithecine monkeys.Int. J. Primatol. 9: 195–231.Google Scholar
  22. Melnick, D. J., Jolly, C. J., and Kidd, K. K. (1984a). The genetics of a wild population of rhesus monkeys (Macaca mulatta). I. Genetic variability within and between social groups.Am. J. Phys. Anthropol. 63: 341–360.CrossRefGoogle Scholar
  23. Melnick, D. J., Pearl, M. C., and Richard, A. F. (1984b). Male migration and inbreeding avoidance in wild rhesus monkeys.Am. J. Primatol. 7: 229–243.CrossRefGoogle Scholar
  24. Melnick, D. J., Jolly, C. J., and Kidd, K. K., (1986). The genetics of a wild population of rhesus monkeys (Macaca mulatta) II. The Dunga Gali population in species-wide perspective.Am. J. Phys. Anthropol. 71: 129–140.PubMedCrossRefGoogle Scholar
  25. Melnick, D. J., Hoelzer, G. A., Absher, R., and Ashley, M. V. (1991a). mtDNA diversity in rhesus monkeys reveals overestimates of divergence time and paraphyly with neighboring species (unpublished manuscript).Google Scholar
  26. Melnick, D. J., Goldstein, S. J., and Gale, L. C. (1991b). Matrilineal group structure, genetic heterogeneity, and the rapid evolution of nonhuman primates (unpublished manuscript).Google Scholar
  27. Melnick, D. J., Hoelzer, G. A., and Honeycutt, R. (1992) The mitochondrial genome: Its uses in anthropological research. In Devor, E. (ed.),Molecular Applications in Biological Anthropology, Cambridge University Press, Cambridge, UK.Google Scholar
  28. Moore, J. (1984). Female transfer in primates.Int. J. Primatol. 5:537–589.Google Scholar
  29. Moore, J., and Ali, R. (1984). Are dispersal and inbreeding related.Anim. Behav., 32: 94–112.CrossRefGoogle Scholar
  30. Napier, J. R., and Napier, P. H. (1967).A Handbook of Living Primates, Academic Press, London.Google Scholar
  31. Nei, M. (1973). Analysis of gene diversity in subdivided populations.Proc. Natl. Acad. Sci. USA 70: 3321–3323.PubMedCrossRefGoogle Scholar
  32. Nei, M. (1982). Evolution of human races at the gene level. In Bonne-Tamir, B., Cohen, P., and Goodman, R. N. (eds),Human Genetics, Part A: The Unfolding Genome, A. R. Liss Press, New York, pp. 167–181.Google Scholar
  33. Nei, M., and Tajima, F. (1983). Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data.Genetics 105: 207–217.PubMedGoogle Scholar
  34. Nozawa, K., Shotake, T., Okhura, Y., and Tanabe, Y. (1977). Genetic variations within and between species of Asian macaques.Jap. J. Genet. 52: 15–30.Google Scholar
  35. Pusey, A. E., and Packer, C. (1987). Dispersal and philopatry. In Smuts, B. B., Cheny, D. L., Seyfarth, R. M. Wrangham R. W., and Struhsaker, T. T. (eds.),Primate Societies, University of Chicago, pp. 250–266.Google Scholar
  36. Richard, A. R., Goldstein, S. J., and Dewar, R. E. (1990). Weed macaques: The evolutionary implications of macaque feeding ecology.Int. J. Primatol. 10: 569–594.Google Scholar
  37. Sade, D. S. (1972). A longitudinal study of social behavior of rhesus monkeys. In Tuttle, R. H. (ed.),The Functional and Evolutionary Biology of Primates, Aldine Press, Chicago, pp. 378–398.Google Scholar
  38. Shotake, T. (1979). Serum albumin and erythrocyte adenosine deaminase polymorphisms in Asian macaques with special reference to taxonomic relationships amongM. assamensis, M. radiata, andM. mulatta.Primates 20: 443–451.CrossRefGoogle Scholar
  39. Williams, A. K., Ashley, M. V., Tenaza, R., and Melnick, D. J. (1991). Extreme mtDNA sequence divergence in pigtail monkeys (unpublished manuscript).Google Scholar
  40. Wilson A. C., Cann, R. L., Carr, S. M., George, M., Gyllensten, U. B., Helm-Bychowski, K. M., Higuchi, R. F., Palumbi, S. R., Prager, E. M., Sage, R. D., and Stoneking, M. (1985). Mitochondrial DNA and two perspectives on evolutionary genetics.Biol. J. Linn. Soc. 26: 375–400.Google Scholar
  41. Wolfheim, J. H. (1983).Primates of the World, University of Washington Press, Seattle.Google Scholar
  42. Wright, S. (1943). Isolation by distance.Genetics 28: 114–138.Google Scholar
  43. Wright, S. (1951). The genetical structure of populations.Annu. Eugen. 15: 323–354.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Don J. Melnick
    • 1
  • Guy A. Hoelzer
    • 1
  1. 1.Genetics Laboratory, Department of AnthropologyColumbia UniversityNew York

Personalised recommendations