Estimating the body size of eocene primates: A comparison of results from dental and postcranial variables

  • Marian Dagosto
  • Carl J. Terranova


Estimating body weights for fossil primates is an important step in reconstructing aspects of their behavior and ecology. To date, the body size of Eocene euprimates—the Adapidae and Omomyidae—has been estimated only from molar area. Studies on other primates and mammals demonstrate that body weights estimated from teeth are not always concordant with those estimated from postcranial variables. We derive estimates for Eocene primates based on tarsal bone variables to compare with previously published values derived from dental measures. Stepsirhine-wide, family-level, and subfamily-level models are developed and compared. We also compare the accuracy and precision of dental- and tarsal-based regression models for predicting weight in extant species. Tarsal bone and dental area measures prove to be equally robust in predicting body weight; however, highly disparate estimates are often obtained from different variables. Equations based on lower-level taxonomic groups perform better than more widely based models. However, all equations considered yield fairly large errors, which can affect interpretations of paleoecology. The choice of the more robust prediction is not straightforward.

Key Words

body size Adapidae Omomyidae tarsus strepsirhines prosimians 


  1. Aiello, L. C. (1981). The allometry of primate body proportions.Symp. Zool. Soc. Lond. 48: 331–358.Google Scholar
  2. Baskerville, G. L. (1972). Use of logarithmic regression in the estimation of plant biomass.Can. J. Forestry Res. 2: 49–53.Google Scholar
  3. Bauchot, R., and Stephan, H. (1964). Donnees nouvelles sur l'encephalisation des Insectivores et des Prosimiens.Mammalia 30: 160–196.CrossRefGoogle Scholar
  4. Beauchamp, J. J., and Olson, J. S. (1973). Corrections for bias in regression estimates after logarithmic transformation.Ecology 54: 1403–1407.CrossRefGoogle Scholar
  5. Calder, W. A. (1984).Size, Function and Life History, Cambridge University Press, Cambridge.Google Scholar
  6. Conroy, C. C. (1987). Problems of body-weight estimation of fossil primates.Int. J. Primatol. 8: 115–138.Google Scholar
  7. Covert, H. H. (1985).The Adaptions and Evolutionary Relationships of the Eocene Primate Subfamily Notharctinae, Ph.D. dissertation, Duke University, Durham, N.C.Google Scholar
  8. Covert, H. H. (1986). Biology of Early Cenozoic primates. In Swindler, D. S. (ed.),Comparative Primate Biology, Vol. 1, Alan R. Liss, New York, pp. 335–359.Google Scholar
  9. Dagosto, M. (1986).The Joints of the Tarsus in the Strepsirhine Primates, Ph.D. dissertation, City University of New York, New York.Google Scholar
  10. Damuth, J., and MacFadden, B. J. (1990).Body Size in Mammalian Paleobiology, Cambridge University Press, Cambridge.Google Scholar
  11. Demes, B., and Jungers, W. L. (1989). Functional differentiation of long bones in lorises.Folia primatol. 52: 58–69.PubMedGoogle Scholar
  12. Fleagle, J. G. (1978). Size distributions in living and fossil primate faunas.Paleobiology 4: 67–76.Google Scholar
  13. Fleagle, J. G. (1985). Size and adaptation in primates. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 1–20.Google Scholar
  14. Gebo, D. L. (1988). Foot morphology and locomotor adaptation in Eocene primates.Folia Primatol. 50: 3–41.PubMedGoogle Scholar
  15. Gebo, D. L., Dagosto, M., and Rose, K. D. (1991). Foot morphology and evolution of early EoceneCantius.Am. J. Phys. Anthropol. 86: 51–73.CrossRefGoogle Scholar
  16. Gingerich, P. D. (1981). Early Cenozoic Omomyidae and the evolutionary history of the tarsilform primates.J. Hum. Evol. 10: 345–374.CrossRefGoogle Scholar
  17. Gingerich, P. D. (1990). Prediction of body mass in mammalian species from long bone lengths and diameters.Contrib. Mus. Paleontol. Univ. Mich. 28: 79–92.Google Scholar
  18. Gingerich, P. D., Smith, B. H., And Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils.Am. J. Phys. Anthropol. 1982: 81–100.CrossRefGoogle Scholar
  19. Gregory, W. K. (1920). On the structure and relations ofNotharctus, an American Eocene primate.Mem. Am. Mus. Nat. Hist. 3: 51–243.Google Scholar
  20. Jungers, W. L. (1985a).Size and Scaling in Primate Biology, Plenum Press, New York.Google Scholar
  21. Jungers, W. L. (1985b). Body size and scaling of limb proportions in primates. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 345–382.Google Scholar
  22. Jungers, W. L. (1988a). Lucy's length: Stature reconstruction inAustralopithecus afarensis (A.L.288-1) with implications for other small-bodied hominids.Am. J. Phys. Anthropol. 76: 227–231.PubMedCrossRefGoogle Scholar
  23. Jungers, W. L. (1988b). Relative joint size and hominid locomotor adaptations with implications for the evolution of hominid bipedalism.J. Hum. Evol. 17: 247–265.CrossRefGoogle Scholar
  24. Jungers, W. L. (1990). Problem and methods in reconstructing body size in fossil primates. In Damuth, J., and MacFadden, B. J. (eds.),Body Size in Mammalian Paleobiology, Cambridge University Press, Cambridge, pp. 103–118.Google Scholar
  25. Kay, R. F. (1975). The functional adaptations of primate molar teeth.Am. J. Phys. Anthropol. 43: 195–216.PubMedCrossRefGoogle Scholar
  26. Kay, R. F., and Simons, E. (1980). The ecology of Oligocene African Anthropoidea.Int. J. Primatol. 1: 21–37.Google Scholar
  27. La Barbera, M. (1989). Analyzing body size as a factor in ecology and evolution.Annu. Rev. Ecol. Syst. 20: 97–117.CrossRefGoogle Scholar
  28. MacPhee, R. D. E., and Jacobs, L. L. (1986).Nycticeboides simpsoni and the morphology adaptations, and relationships of Miocene Siwalik Lorisidae. In Flanagan, K. M., and Lillegraven, J. A. (eds.),Vertebrates, Phylogeny, and Philosophy: contributions to Geology, University of Wyoming, Special Paper 3, pp. 131–162.Google Scholar
  29. Martin, R. D. (1982). Adaptation and body size in primates.Z. Morph. Anthropol. 71: 115–124.Google Scholar
  30. Meier, B., Albiganac, R., Perrieras, A., Rumpler, Y., and Wright, P. C. (1987). A new species ofHapalemur (Primates) from Southeast Madagascar.Folia Primatol. 48: 211–215.PubMedGoogle Scholar
  31. Montogomery, D. C., and Peck, E. A. (1982).Introduction to Linear Regression Analysis, Wiley, New York.Google Scholar
  32. Nash, L. T., Bearder, S. K., and Olson, T. R. (1989). Synopsis ofGalago species characteristics.Int. J. Primatol. 10: 57–80.Google Scholar
  33. Peters, R. H. (1983).The Ecological Implications of Body Size, Cambridge University Press, Cambridge.Google Scholar
  34. Radinsky, L. (1982). Some cautionary notes on making inferences about relative brain size. In Amstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum Press, New York, pp. 29–37.Google Scholar
  35. Ruff, C. (1987). Structural allometry of the femur and tibia in Hominoidea andMacaca.Folia Primatol. 48: 9–49.PubMedGoogle Scholar
  36. Ruff, C. (1988). Hindlimb articular surface allometry in Hominoidea andMacaca, with comparison to diaphyseal scaling.J. Hum. Evol. 17: 687–714.CrossRefGoogle Scholar
  37. Ruff, C. (1990). Body mass and hindlimb bone cross-sectional and articular dimensions in anthropoid primates. In Damuth, J., and MacFadden, B. J. (eds.),Body Size in Mammalian Paleobiology, Cambridge University Press, Cambridge, pp. 119–150.Google Scholar
  38. Ruff, C., Walker, A., and Teaford, M. F. (1989). Body mass, sexual dimorphism, and femoral proportions ofProconsul from Rusinga and Mfangano Islands, Kenya.J. Hum. Evol. 18: 515–536.CrossRefGoogle Scholar
  39. Schmidt-Nielsen, K. (1984).Scaling: Why Is Animal Size So Important? Cambridge University Press, Cambridge.Google Scholar
  40. Scott, K. M. (1983). Prediction of body weight of fossil Artiodactyla.Zool. J. Linn. Soc. 77: 199–215.Google Scholar
  41. Simons, E. L. (1988). A new species ofPropithecus (Primates) from Northeast Madagascar.Folia Primatol. 50: 143–151.PubMedGoogle Scholar
  42. Simpson, G. G., Roe, A., and Lewontin, R. C. (1960).Quantitative Zoology, Harcourt, Brace, and World, New York.Google Scholar
  43. Smith, R. J. (1984). Allometric scaling in comparative biology: Problems of concept and method.Am. J. Physiol. 246: R152–160.PubMedGoogle Scholar
  44. Smith, R. J. (1985). The present as a key to the past: Body weight of Miocene hominoids as a test of allometric methods for paleontological inferences. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 437–448.Google Scholar
  45. Sokal, R. R., and Rohlf, F. J. (1981).Biometry, W. H. Freeman, San Francisco.Google Scholar
  46. Sprugel, D. G. (1983). Correcting for bias in long-transformed allometric equations.Ecology 64: 209–210.CrossRefGoogle Scholar
  47. Steudel, K. (1985). Allometric perspectives on fossil catarrhine morphology. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 449–475.Google Scholar
  48. Swartz, (1989). The functional morphology of weight bearing: Limb joint surface area allometry in anthropoid primates.J. Zool. Lond. 218: 441–460.CrossRefGoogle Scholar
  49. Szalay, F. S. (1976). Systematics of the Omomyidae (Tarsiiformes, Primates).Bull. Am. Mus. Nat. Hist. 156: 157–450.Google Scholar
  50. Tattersall, I. (1982).The Primates of Madagascar, Columbia University Press, New York.Google Scholar
  51. Wilson, J. M., Stewart, P. D., Ramangason, G.-S., Denning, A. M., and Hutchings, M. S. (1989). Ecology and conservation of the crowned lemur,Lemur coronatus, at Ankarana, N. Madagascar,Folia Primatol. 52: 1–26.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Marian Dagosto
    • 1
  • Carl J. Terranova
    • 2
  1. 1.Department of Cell, Molecular and Structural BiologyNorthwestern University Medical SchoolChicago
  2. 2.Department of AnthropologyNorthwestern UniversityEvanston

Personalised recommendations