Advertisement

Journal of thermal analysis

, Volume 45, Issue 6, pp 1437–1448 | Cite as

Study of the nature of the crystallization water in some magnesium hydrates by thermal methods

  • Lucia Odochian
Article

Abstract

The nature of the crystallization water in MgSO4·7H2O, Mg(NO3)2·6H2O and MgCl2·6H2O has been studied with the nonisothermal methods of thermogravimetry (TG), derived thermogravimetry (DTG) and differential thermal analysis (DTA).

Analysis of the characteristic thermogravimetric data (T M,W ) and the kinetic parameters (n, E a), together with the DTA results, with CuSO4·5H2O as control sample, provided evidence of the existence of coordinated water and of the nature of the anions in these hydrates.

The results are confirmed by the observation of a real compensation effect. For the compensation effect, the following equation is proposed: InA=0.220E-0.8

Structures explaining the presence of the coordinated water and the nature of the anions in these hydrates are also proposed.

Keywords

crystallization water DSC kinetics magnesium hydrates TG-DTG-DTA 

Zusammenfassung

Mittels nichtisothermer Methoden der Thermogravimetrie (TG), Derivationsthermogravimetrie (DTG) und Differentialthermoanalyse (DTA) wurde die Art des Kristallwassers in den Verbindungen MgSO4·7H2O, Mg(NO3)2·6H2O und MgCl2·6H2O untersucht. Eine Analyse der charakteristischen thermogravimetrischen Angaben (T M,W ) und der kinetischen Parameter (n, E a) zusammen mit den DTA-Ergebnissen (mit CuSO4·5H2O) als Referenzprobe) lieferten den Beweis für die Existenz koordinierten Wassers und für die Art der Anionen in diesen Hydraten.

Die Ergebnisse wurden durch die Beobachtung eines tatsächlichen Kompensationseffektes bestätigt. Für den Kompensationseffekt wird nachstehende Gleichung empfohlen: lnA=0.220E-0.8. Weiterhin wurden Strukturen vorgeschlagen, welche die Gegenwart von koordiniertem Wasser und die Natur der Anionen in diesen Hydraten erklären.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Negoiu, Tratat de Chimie anorganica II, Editura tehnicâ, Bucure§ti 1972, a) p. 248; b) p. 350; c) p. 358; d) p. 356.Google Scholar
  2. 2.
    J. Paulik, F. Paulik and L. Erdey, Microchim. Acta, (1966) 886.Google Scholar
  3. 3.
    J. Paulik, F. Paulik and L. Erdey, Anal. Chim. Acta, (1966) 419.Google Scholar
  4. 4.
    E. L. Simmons and W. W. Wendlandt, Thermochim. Acta, 2 (1971) 465.CrossRefGoogle Scholar
  5. 5.
    T. P. Herbells, Thermochim. Acta, 4 (1972) 295.CrossRefGoogle Scholar
  6. 6.
    C. Duval, Inorganic Thermogravimetric Analysis, Elsevier Publishing Company, Amsterdam 1963 a) p. 217; b) p. 218.Google Scholar
  7. 7.
    A. B. Phadmis and V. V. Desparide, Thermochim. Acta, 43 (1981) 249.CrossRefGoogle Scholar
  8. 8.
    H. Tanaka and N. Koga, Thermochim. Acta, 133 (1988) 221.CrossRefGoogle Scholar
  9. 9.
    S. Shaval, S. Variv, V. Kirsh, Thermochim. Acta, 133 (1988) 263.CrossRefGoogle Scholar
  10. 10.
    E. Urbanovici and E. Segal, Proc. Natl. Symp. Thermal. Anal. 8th, 1991, p. 55.Google Scholar
  11. 11.
    N. Koga and H. Tanaka, Thermochim. Acta, 183 (1991) 125.CrossRefGoogle Scholar
  12. 12.
    C. Popescu and E. Segal, Rev. Roum. Chim., 37 (1992) 113.Google Scholar
  13. 13.
    E. H. Kim, J. J. Park, J. H. Park, J. S. Chang, C. S. Choi, Thermochim. Acta, 196 (1992) 495.CrossRefGoogle Scholar
  14. 14.
    N. Koga and H. Tanaka, Thermochim. Acta, 209 (1992) 127.CrossRefGoogle Scholar
  15. 15.
    P. M. Modhusudanan, K. Krishnan and K. N. Ninon, Thermochim. Acta, 221 (1993) 13.CrossRefGoogle Scholar
  16. 16.
    E. S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.CrossRefGoogle Scholar
  17. 17.
    A. W. Coats and J. T. Redfern, Nature (London), 201 (1964) 68.CrossRefGoogle Scholar
  18. 18.
    N. Hurduc, L. Odochian, C. Vasile, St. Ungureanu and D. Gilea, Metode experimentale in cinetica chimicâ cu prelucrarea datelor pe calculator, Institutul Politehnic la§i, 1979, a) p. 138; b) p. 189.Google Scholar
  19. 19.
    N. Hurduc, C. Vasile and L. Odochian, Bull. Inst. Politehnic Ia§i, 1–4, (1982) 47.Google Scholar
  20. 20.
    A. V. Nikolaev, V. Logvinenko and V. M. Gorbachev, J. Thermal Anal., 6 (1979) 473.CrossRefGoogle Scholar
  21. 21.
    A. V. Nikolaev and V. A. Logvinenko, J. Thermal Anal., 10 (1976) 363.CrossRefGoogle Scholar
  22. 22.
    V. M. Gorbachev, J. Thermal Anal., 8 (1975) 585.CrossRefGoogle Scholar
  23. 23.
    V. M. Gorbachev, J. Thermal Anal., 9 (1976) 121.CrossRefGoogle Scholar
  24. 24.
    E. Segal and D. Fâtu, Introducere in cinetica neizotermâ, Editura Academiei, Bucure§ti 1983, p. 189.Google Scholar
  25. 25.
    C. Vasile, E. Costea and L. Odochian, Thermochim. Acta, 184 (1991) 305.CrossRefGoogle Scholar
  26. 26.
    N. Hurduc and D. Ionescu, Cellulose Chem. and Technol., 26 (1992) 41.Google Scholar
  27. 27.
    J. Zsakó, Cs. Várhelyi, G. Liptay and K. Szilágyi, J. Thermal Anal., 7 (1975) 41.CrossRefGoogle Scholar
  28. 28.
    P. Pascal, Nouveau traité de Chimie Minérale, Masson et Cie éditures, Paris, 1956, p. 427.Google Scholar
  29. 29.
    C. Drâgulescu and E. Petrovici, Introducere in Chimia anorganicâ modernâ, Editura Facla, Timi§oara, 1973, p. 296.Google Scholar
  30. 30.
    G. J. Janz, Estimation of Thermodynamic Properties of Organic Compounds, Pergamon, New York 1967, p. 132.Google Scholar
  31. 31.
    H. Tanaka and N. Koga, Thermochim. Acta, 133 (1988) 227.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • Lucia Odochian
    • 1
  1. 1.Department of Physical Chemistry‘Al. I. Cuza’ UniversityJassyRoumania

Personalised recommendations