Calcified Tissue Research

, Volume 11, Issue 4, pp 269–280 | Cite as

The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals

  • A. Jung
  • S. Bisaz
  • H. Fleisch
Original Papers


The binding on hydroxyapatite has been studied of inorganic pyrophosphate (PPj) and two diphosphonates, disodium ethane-1-hydroxy-1,1-diphosphonate (EHDP) and disodium dichloromethylene diphosphonate (Cl2MDP). The binding is greatest for PPi, less for EHDP and least for Cl2MDP. The binding of all three is accompanied by a release of orthophosphate into the solution and an uptake of calcium by the crystals. A competition exists between EHDP and PPi, EHDP being more potent in displacing PPi than the reverse. An analysis with Scatchard plots suggests that the binding is not restricted to one class of binding sites with equal affinity and that the affinity of the first site is in the order EHDP>PPi>Cl2MDP. The results correlate well with previous data on the effect of these compounds on apatite crystal formation and dissolutionin vitro and on bone formation and resorptionin vivo

Key words

Pyrophosphate Diphosphonates Binding Hydroxyapatite 


La liaison du pyrophosphate inorganique (PPi) et de deux diphosphonates, l’éthane-1-hydroxy-1,1-diphosphonate disodique (EHDP) et le dichlorométhylène diphosphonate disodique (Cl2MDP), sur l’hydroxyapatite a été étudiée. Le PPi est lié plus fortement que l’EHDP, tandis que le Cl2MDP se lie le moins fortement. La liaison de ces trois substances s’accompagne d’une libération d’orthophosphate dans la solution et d’une adsorption de calcium par les cristaux. Il existe une compétition entre l’EHDP et le PPi; la capacié de l’EHDP à déplacer le PPi est plus grande que celle du PPi à déplacer l’EHDP. L’analyse des résultats à l’aide des fonctions de Scatchard suggère que la liaison n’est pas limitée à une catégorie de sites de liaison ayant une affinité constante et que l’affinité du premier site de liaison est plus grande pour l’EHDP que pour le PPi et plus grande pour le PPi que pour le Cl2MDP. Ces résultats sont en accord avec des résultats précédents concernant l’effet de ces composés sur la formation et la dissolution de cristaux d’apatitein vitro et la formation et la résorption osseusein vivo.


Die Bindung von anorganischem Pyrophosphat (PPi) und zwei Diphosphonaten—Dinatrium-Äthan-1-hydroxy-1,1-diphosphonat (EHDP) und Dinatrium-Dichloromethylen-Diphosphonat (Cl2MDP)—an Hydroxyapatit wurde untersucht. Die Bindung ist am stärksten bei PPi, schwächer bei EHDP und am schwächsten bei Cl2MDP. Bei der Bindung aller drei Substanzen erfolgt gleichzeitig eine Abgabe von Orthophosphat in die Lösung und eine Aufnahme von Calcium durch die Kristalle. Es besteht eine Kompetition zwischen EHDP und PPi, wobei EHDP stärker ist im Verdrängen von PPi als umgekehrt. Eine Analyse mit Scatchard-Kurven weist darauf hin, daß die Bindung nicht auf eine Klasse von Stellen mit konstanter Affinität beschränkt ist und daß die Affinität der ersten Bindungsstelle die Reihenfolge EHDP>PPi>Cl2MDP hat. Die Resultate stimmen gut überein mit früheren Befunden über die Wirkung dieser Verbindungen auf die Bildung und Auflösung von Apatitkristallenin vitro und auf die Knochenbildung und-resorptionin vivo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bassett, C. A. L., Donath, A., Macagno, F., Preising, R., Fleisch, H., Francis, M. D.: Diphosphonates in the treatment of myositis ossificans. Lancet1969 II, 845.Google Scholar
  2. Bisaz, S., Russell, R. G. G., Fleisch, H.: Isolation of inorganic pyrophosphate from bovine and human teeth. Arch. oral Biol.13, 683–696 (1968).PubMedCrossRefGoogle Scholar
  3. Bliznakov, G.: Sur le mécanisme de l’action des additifs adsorbants dans la croissance cristalline. In: Adsorption et croissance cristalline, p. 291–301. Paris: Editions du Centre National de la Recherche Scientifique 1965.Google Scholar
  4. Burton, F. G., Neuman, M. W., Neuman, W. F.: On the possible role of crystals in the origin of life. I. The adsorption of nucleosides, nucleotides and pyrophosphate by apatite crystals. Curr. mod. Biol.3, 20–26 (1969).PubMedGoogle Scholar
  5. Chen, P. S., Toribara, T. Y., Warner, H.: Microdetermination of phosphorus. Analyt. Chem.28, 1756–1758 (1956).CrossRefGoogle Scholar
  6. Dallemagne, M. J.: Le calcium dans le squelette et les dents. Section A: Apatites, phosphates calciques de synthèse, sels osseux et dentaires. In: Handbuch der experimentellen Pharmakologie, Bd. XVII/2, S. 273. Berlin-Göttingen-Heidelberg-New York: Springer 1964.Google Scholar
  7. Damme, M. A. van: The influence of ferrocyanide complexes on the dissolution of sodium chloride. In: Adsorption et croissance cristalline, p. 433–449. Paris: Editions du Centre National de la Recherche Scientifique 1965.Google Scholar
  8. Fleisch, H., Bisaz, S.: Isolation from urine of pyrophosphate, a calcification inhibitor. Amer. J. Physiol.203, 671–675 (1962).PubMedGoogle Scholar
  9. Fleisch, H., Maerki, J., Russell, R. G. G.: Effect of pyrophosphate on dissolution of hydroxyapatite and its possible importance in calcium homeostasis. Proc. Soc. exp. Biol. Med. (N. Y.)122, 317–320 (1966a).Google Scholar
  10. Fleisch, H., Russell, R. G. G.: Pyrophosphate and polyphosphate. Chap. 3 in the International Encyclopedia of Pharmacology and Therapeutics, sect. 51 (G. Peters and C. Radouco-Thomas eds.), p. 61–100. London: Pergamon Press 1970.Google Scholar
  11. Fleisch, H., Russel, R. G. G., Bisaz, S., Casey, P. A., Mühlbauer, R. C.: The influence of pyrophosphate analogues (diphosphonates) on the precipitation and dissolution of calcium phosphatein vitro andin vivo. Calc. Tiss. Res.2, Suppl. 10–10A (1968).CrossRefGoogle Scholar
  12. Fleisch, H., Russell, R. G. G., Bisaz, S., Mühlbauer, R. C., Williams, D. A.: The inhibitory effect of phosphonates on the formation of calcium phosphate crystalsin vitro and on aortic and kidney calcificationin vivo. Europ. J. clin. Invest.1, 12–18 (1970).PubMedGoogle Scholar
  13. Fleisch, H., Russell, R. G. G., Francis, M. D.: Diphosphonates inhibit hydroxyapatite dissolutionin vitro and bone resorption in tissue culture andin vivo. Science165, 1262–1264 (1969).PubMedCrossRefGoogle Scholar
  14. Fleisch, H., Russell, R. G. G., Straumann, F.: Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature (Lond.)212 901–903 (1966b).CrossRefGoogle Scholar
  15. Francis, M. D.: The inhibition of calcium hydroxyapatite crystal growth by polyphosphates. Calc. Tiss. Res.3, 151–162 (1969).CrossRefGoogle Scholar
  16. Francis, M. D., Russell, R. G. G., Fleisch, H.: Diphosphonates inhibit formation of calcium phosphate crystalsin vitro and pathological calcificationin vivo. Science165, 1264–1266 (1969).PubMedCrossRefGoogle Scholar
  17. Gasser, A. B., Morgan, D. B., Fleisch, H., Richelle, L. J.: The influence of two diphosphonates on calcium metabolism in the rat. Clin. Sci.43, 31–45 (1972).PubMedGoogle Scholar
  18. Glasstone, S.: Textbook of physical chemistry, 2nd edit. Princeton, N.J.: D. van Nostrand Company, Inc. 1946.Google Scholar
  19. Hall, R. J.: An improved method for the microdetermination of inorganic phosphate in small volumes of biological fluids. J. med. Lab. Technol.20, 97–103 (1963).PubMedGoogle Scholar
  20. Jowsey, J., Holley, K. E., Linman, J. W.: Effect of sodium etidronate in adult cats. J. Lab. clin. Med.76, 126–133 (1970).PubMedGoogle Scholar
  21. King, W. R., Francis, M. D., Michael, W. R.: Effect of disodium ethane-1-hydroxy-1,1-diphosphonate on bone formation. Clin. Orthop. No78, 251–270 (1971).PubMedCrossRefGoogle Scholar
  22. Krane, S. M., Glimcher, M. J.: Transphosphorylation from nucleoside di-and triphosphates by apatite crystals. J. biol. Chem.237, 2991–2998 (1962).PubMedGoogle Scholar
  23. Levinskas, G. J.: Ph.D. Thesis, p. 47 and 84. New York: University of Rochester 1953.Google Scholar
  24. Miura, M., Naono, H.: The effect of several condensed phosphates on the dissolution of strontium sulfate. Bull. chem. Soc. Jap.38, 492–495 (1965).CrossRefGoogle Scholar
  25. Mutaftschiev, B., Chajes, H., Gindt, R.: Cinétique de dissolution de NaCl et adsorption des ions cadmium. In: Adsorption et croissance cristalline, p. 419–432. Paris: Editions du Centre National de la Recherche Scientifique 1965.Google Scholar
  26. Orimo, H., Fujita, T., Yoshikawa, M.: Pyrophosphate enhancement of hypocalcemic effect of thyrocalcitonin in rats. Endocr. jap.16, 309–313 (1969).Google Scholar
  27. Rasmussen, H., Feinblatt, J., Nagata, N., DeLong, A.: Regulation of bone cell function. In: Osteoporosis (U. S. Barzel ed.), p. 187–198. New York-London: Grune & Stratton 1970.Google Scholar
  28. Robertson, W. G., Morgan, D. B., Fleisch, H., Francis, M. D.: The effects of diphosphonates on the exchangeable and non-exchangeable calcium and phosphate of hydroxyapatite. Biochim. biophys. Acta (Amst.)261, 517–525 (1972).Google Scholar
  29. Russell, R. G. G., Bisaz, S., Donath, A., Morgan, D. B., Fleisch, H.: Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta and other disorders of bone. J. clin. Invest.50, 961–969 (1971).PubMedCrossRefGoogle Scholar
  30. Russell, R. G. G., Mühlbauer, R. C., Bisaz, S., Williams, D. A., Fleisch, H.: The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatitein vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats. Calc. Tiss. Res.6, 183–196 (1970).CrossRefGoogle Scholar
  31. Scatchard, G.: The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci.51, 660–672 (1949).CrossRefGoogle Scholar
  32. Schenk, R., Merz, W. A., Mühlbauer, R., Russel, R. G. G., Fleisch, H.: Effect of ethane-1-hydroxy-1, 1-diphosphonate (EHDP) and dichloromethylene diphosphonate (Cl2 MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaphysis of rats. Calc. Tiss. Res.11, 196–214 (1973).Google Scholar
  33. Schibler, D., Russell, R. G. G., Fleisch, H.: Inhibition by pyrophosphate and polyphosphate of aortic calcification induced by vitamin D3 in rats. Clin. Sci.35, 363–372 (1968).PubMedGoogle Scholar
  34. Smith, R., Russell, R. G. G., Bishop, M.: Diphosphonates and Paget’s disease of bone. Lancet1971I, 945–947.Google Scholar
  35. Taves, D. R., Reedy, R. C.: A structural basis for the transphosphorylation of nucleotides with hydroxyapatite. Calc. Tiss. Res.3, 284–292 (1969).CrossRefGoogle Scholar
  36. Weder, H. J., Bickel, M. H.: Interactions of drugs with proteins. I. Binding of tricyclic thymoleptics to human and bovine plasma proteins. J. pharm. Sci.59, 1505–1507 (1970a).PubMedCrossRefGoogle Scholar
  37. Weder, H. J., Bickel, M. H.: Interactions of drugs with proteins. II. Experimental methods, treatment of experimental data and thermodynamics of the binding reactions of thymoleptic drugs and model dyes. J. pharm. Sci.59, 1563–1569 (1970b).PubMedCrossRefGoogle Scholar
  38. Weiss, I. W., Fisher, L., Phang, J. M.: Diphosphonate therapy in a patient with myositis ossificans progressiva. Ann. intern. Med.74, 933–936 (1971).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • A. Jung
    • 1
    • 2
  • S. Bisaz
    • 1
    • 2
  • H. Fleisch
    • 1
    • 2
  1. 1.Institute of PathophysiologyUniversity of BerneBerneSwitzerland
  2. 2.Laboratory for Experimental SurgeryDavos

Personalised recommendations