Calcified Tissue Research

, Volume 17, Issue 4, pp 289–302 | Cite as

Characterization of developing antler cartilage matrix

II. An ultrastructural study
  • J. W. Newbrey
  • W. J. Banks
Original Papers


Cartilage from the main beams and tines of deer antler was examined with the electron microscope. The material studied included prechondroblastic, chondroblastic and chondrocytic matrices. Ecdysial microfibrils (5–10 nm in diameter) were observed in the matrix of the prechondroblastic zone. These microfibrils and associated amorphous material were continuous with electron-dense material that probably represented extracellular units of collagen polymers. Matrix (proteoglycan) granules were first observed in the chondroblastic zone. They stained positively with colloidal iron and therefore probably represented proteinpolysaccharides. The matrix granules of the chondrocytic (unmineralized and mineralized) zone were twice the diameter of those in the chondroblastic zone. Matrix vesicles were present in all three stages of development. They were in contact with cellular extensions and also arose directly from cell membranes in the immature zones. As in somatic mineralizing cartilage, these vesicles served as the foci for early mineralization. The initial mineralization process was associated with the membrane of the vesicles.

Key words

Antler Cartilage Matrix Ultrastructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcock, N. S.: Calcification of cartilage. Clin. Orthop.86, 287–311 (1972)PubMedCrossRefGoogle Scholar
  2. Ali, S. Y., Sajdera, S. W., Anderson, H. C.: Isolation and characterization of calcifying matrix vesicles from epiphyseal eartilage. Proc. nat. Acad. Sci. (Wash.)67, 1513–1520 (1970)CrossRefGoogle Scholar
  3. Anderson, H. C.: Electron microscopic studies of induced cartilage development and calcification. J. Cell Biol.35, 81–101 (1967).PubMedCrossRefGoogle Scholar
  4. Anderson, H. C.: Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol.41, 59–72 (1969).PubMedCrossRefGoogle Scholar
  5. Anderson, H. C., Sajdera, S. W.: The fine structure of bovine nasal cartilage. Extraction as a technique to study proteoglycans and collagen in cartilage matrix. J. Cell. Biol.49, 650–663 (1971).PubMedCrossRefGoogle Scholar
  6. Banks, W. J.: The ossification process of the developing antler in the white-tailed deer (Odocoileus virginianus). Calcif. Tiss. Res.14, 257–274 (1974).CrossRefGoogle Scholar
  7. Banks, W. J., Neal, J.: The cartilaginous nature of the cervine antler. Proc. EMSA 28th Ann. Meetings, p. 154–155 (1970)Google Scholar
  8. Bennett, H. S., Luft, J. H.: s-Collidine as a basis for buffering fixatives. J. biophys. biochem. Cytol.6, 113–114 (1959)PubMedGoogle Scholar
  9. Bonucci, E.: Fine structure of early cartilage calcification. J. Ultrastruct. Res.20, 33–50 (1967).PubMedCrossRefGoogle Scholar
  10. Bonucci, E.: Fine structure and histochemistry of “Calcifying Globules” in epiphyseal cartilage. Z. Zellforsch.103, 192–217 (1970)PubMedCrossRefGoogle Scholar
  11. Brandt, K. D., Muir, H.: Heterogeneity of protein-polysaccharides of porcine articular cartilage. The chondroitin sulphate proteins associated with collagen. Biochem. J.123, 747–755 (1971).PubMedGoogle Scholar
  12. Campo, R. D.: Protein-polysaccharides of cartilage and bone in health and disease. Clin. Orthop.68, 182–209 (1970).PubMedGoogle Scholar
  13. Campo, R. D., Phillips, S. J.: Electron microscopic visualization of proteoglycans and collagen in bovine costal cartilage. Calcif. Tiss. Res.13, 83–92 (1973).CrossRefGoogle Scholar
  14. Fahmy, A.: An extemporaneous lead citrate stain for electron microscopy. Proc. EMSA Ann. Meeting, vol. 25, p. 148–149 (1967).Google Scholar
  15. Fahrenbach, W. Y., Sandberg, L. G.; Cleary, E. G.: Ultrastructural studies on early elastogenesis. Anat. Rec.155, 563, 576 (1966).CrossRefGoogle Scholar
  16. Frasier, M. B., Banks, W. J., Newbrey, J. W.: Characterization of developing antler cartilage matrix. I. Selected histochemical and enzymatic assessment. Calcif. Tiss. Res.17, 273–288 (1975).Google Scholar
  17. Frederickson, R. G., Low, F. N.: The fine structure of perinotochordal microfibrils in control and enzyme-treated chick embryos. Amer. J. Anat.130, 347–376 (1971).PubMedCrossRefGoogle Scholar
  18. Godman, G. C., Porter, K. R.: Chondrogenesis, studied with the electron microscope. J. biophys. biochem. Cytol.8, 719–760 (1960).PubMedGoogle Scholar
  19. Goss, R. J.: Problems in antlerogenesis. Clin. Orthop.69, 227–238 (1970)PubMedGoogle Scholar
  20. Greenlee, T. K., Ross, R., Hartman, J. L.: The fine structure of elastic fibers. J. Cell Biol.30, 59–71 (1966)PubMedCrossRefGoogle Scholar
  21. Haust, M. D.: Fine fibrils of extracellular space (microfibrils). Amer. J. Path.47, 1113–1137 (1965).PubMedGoogle Scholar
  22. Howell, D. S.: Review article—current concepts of calcification. J. Bone Jt Surg.53A (2), 250–258 (1971).Google Scholar
  23. Jackson, D. S., Bentley, J. R.: Collagen-glycosaminoglycan interactions. In: Treatise of collagen, vol. 2, part A (G. N. Ramachandran, B. S. Gould, eds.), p. 434. New York: Academic Press 1968Google Scholar
  24. Luft, J. H.: Improvement sin epoxy resin embedding methods. J. Biophys. Biochem. Cytol.9, 409–414 (1961)PubMedCrossRefGoogle Scholar
  25. Martin, A. V. W.: An electron, microscope study of the cartilaginous matrix in the developing tibia of the fowl. J. Embryol. exp. Morph.2, 38–48 (1954)Google Scholar
  26. Mathews, J. L., Martin, J. H.: Atlas of human histology and ultrastructure, p. 382. Philadelphia: Lea and Febiger 1971Google Scholar
  27. Mathews, M. B.: Biophysical aspects of acid mucopolysaccharides relevant to connective tissue structure and function. Biochem. J.96, 710–716 (1965)PubMedGoogle Scholar
  28. Matukas, V. J., Krikos, G. A.: Evidence for changes in protein polysaccharide associated with the onset of calcification in cartilage. J. Cell Biol.39, 43–48 (1968)PubMedCrossRefGoogle Scholar
  29. Matukas, V. J., Panner, B. J., Orbison, J. L.: Studies on ultrastructural identification and distribution of protein-polysaccharide in cartilage matrix. J. Cell Biol.32, 365–377 (1967)PubMedCrossRefGoogle Scholar
  30. Millonig, G.: Advantages of a phosphate buffer for osmium tetroxide solutions in fixation. J. appl. Phys.32, 1637 (1961)Google Scholar
  31. Modell, W., Noback, C. V.: Histogenesis of bone in the growing antler of the cervidae. Amer. J. Anat.49, 65–96 (1931).CrossRefGoogle Scholar
  32. Myers, D. B., Highton, T. C., Rayns, D. G.: Acid mucopolysaccharides closely associated with collagen fibrils in normal human synovium. J. Ultrastruct. Res.28, 203–213 (1969).PubMedCrossRefGoogle Scholar
  33. Newbrey, J. W., Banks, W. J.: The ultrastructure of mature and mineralizing cartilaginous matrix in deer antler. Proc. EMSA 31st Ann. Meetings, p. 354–355. Baton Rouge: Claitor’s 1973Google Scholar
  34. Olson, M. D., Low, F. N.: The fine structure of developing cartilage in the chick embryo. Amer. J. Anat.131, 197–216 (1971).PubMedCrossRefGoogle Scholar
  35. Quintarelli, G., Dellovo, M. C., Balduini, C., Castellani, A. A.: The effects of the alpha amylase on collagen-proteoglycans and collagen-glycoprotein complexes in connective tissue matrices. Histochemie18, 373–375 (1969)PubMedGoogle Scholar
  36. Richardson, K. C., Jarret, L., Fink, E. H.: Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol.35, 313–323 (1960)PubMedGoogle Scholar
  37. Sabatini, D. D., Bensch, K. G., Barnett, R. J.: Preservation of ultrastructure and enzymatic activity of aldehyde fixation. J. Histochem. Cytochem.10, 652–653 (abstract) (1962)Google Scholar
  38. Sabatini, D. D., Bensch, K. G., Barnett, R. J.: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol.17, 19–58 (1963).PubMedCrossRefGoogle Scholar
  39. Sayegh, F. S., Solomon, G. C., Davis, R. W.: Ultrastructure of intracellular mineralization in the deer’s antler. Clin. Orthop.99, 267–284 (1974).PubMedCrossRefGoogle Scholar
  40. Schenk, R. K., Spiro, D., Wiener, J.: Cartilage resorption in the tibial epiphyseal plate of growing rats. J. Cell Biol.34, 275–291 (1967).PubMedCrossRefGoogle Scholar
  41. Schubert, M., Pras, M.: Ground substance proteinpolysaccharides and the precipitation of calcium phosphate. Clin. Orthop.60, 235–255 (1968).PubMedGoogle Scholar
  42. Smith, J. W., Serafini-Fracassini, A.: The distribution of the proteinpolysaccharide complex in the nucleus pulposus matrix in young rabbits. J. Cell Sci.3, 33–40 (1968).PubMedGoogle Scholar
  43. Wislocki, G. B., Weatherford, H. L., Singer, M.: Osteogenesis of antlers investigated by histological and histochemical methods. Anat. Rec.99, 265–295 (1947).CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • J. W. Newbrey
    • 1
  • W. J. Banks
    • 1
  1. 1.Department of Anatomy, College of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsUSA

Personalised recommendations