Calcified Tissue Research

, Volume 18, Issue 1, pp 81–90

Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite

  • N. C. Blumenthal
  • F. Betts
  • A. S. Posner
Original Papers


Amorphous calcium phosphate (ACP) was transformed at 25° to hydroxyapatite (HA) in horse and bovine serum; solutions of serum-protein fractions in tris-HCl buffer (pH 7.4), and pH 7.4 buffers containing from 0.1 to 10 times physiological CO32− concentration. The ACP-to-HA transformation was slower in whole serum and serum fractions than in control buffer solution. The observed adsorption of serum proteins on ACP and HA probably inhibits both the dissolution of the ACP particles and the growth of HA crystals. After 72 h all transformations were complete as determined by X-ray diffraction. The HA crystal dimensions decreased with increasing CO32− but the shape, as shown by X-ray linewidths, was relatively constant up to about 4% CO32−. At 15% CO32− the crystals were more equiaxial and less needle-like in habit. The radial distribution function (RDF) of HA with 3.7% CO32− is less well resolved than the RDF of HA with ambient CO32− (1.1%). The peaks are less sharp and their amplitude falls more rapidly with increasing atomic separation than for low CO32−-HA. These effects show that CO32− decreases the regularity of the atomic arrangement when incorporated in HA. The rapid decrease, with increasing CO32− content, of the IR splitting of the P−O bending mode of CO32−-HA is attributed to reduced crystal size and possibly to a perturbation of the crystal field due to CO32−-induced lattice distortion. Finally, for bone mineral, it is probable that the poor resolution of the X-ray and IR patterns is due, in large part, to small crystal size and internal disorder caused by CO32−.

Key words

Hydroxyapatite Carbonate Bone Serum proteins Radial distribution function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachra, B. N.: Precipitation of calcium carbonates and phosphates from metastable solutions. Ann. N.Y. Acad. Sci.109, 251–255 (1959)CrossRefGoogle Scholar
  2. 2.
    Bernardi, G.: In: Methods in enzymology, vol. 27, Enzyme structure, part. D (Hirs, C. H. W., Timasheff, S. N., eds.), p. 471–479. New York: Academic Press 1973CrossRefGoogle Scholar
  3. 3.
    Betts, F., Posner, A. S.: An X-ray radial distribution study of amorphous calcium phosphate. Mat. Res. Bull.9, 353–360 (1974)CrossRefGoogle Scholar
  4. 4.
    Betts, F., Posner, A. S.: A structural model for amorphous calcium phosphate. Trans. Amer. Cryst. Ass.10, 73 (1974)Google Scholar
  5. 5.
    Blumenthal, N. C., Posner, A. S.: Effect of preparation conditions on the properties and transformation of amorphous calcium phosphate. Mat. Res. Bull.7, 1181–1190 (1972)CrossRefGoogle Scholar
  6. 6.
    Blumenthal, N. C., Posner, A. S.: Hydroxyapatite: Mechanism of formation and properties. Calcif. Tiss. Res.13, 235–243 (1973)CrossRefGoogle Scholar
  7. 7.
    Boskey, A. L., Posner, A. S.: Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated solid-solid conversion. J. Phys. Chem.77, 2313–2317 (1973)CrossRefGoogle Scholar
  8. 8.
    Conway, E. J.: Microdiffusion analysis and volumetric error. London: Lockwood & Son Ltd. 1957Google Scholar
  9. 9.
    Dallemagne, M. J., Richelle, L. J.: In: Biological mineralization (Zipkin, I., ed.), p. 23–42. New York: John Wiley and Sons 1973Google Scholar
  10. 10.
    Harper, R. A., Posner, A. S.: Measurement of non-crystalline calcium phosphate in bone mineral. Proc. Soc. exp. Biol. (N.Y.)122, 137–142 (1966)Google Scholar
  11. 11.
    Klug, H. P., Alexander, L. E.: X-ray diffraction procedures, p. 491–538, New York: Wiley and Sons 1954Google Scholar
  12. 12.
    LeGeros, R. Z., Trautz, O. R., LeGeros, J. P., Klein, E.: Carbonate substitution in the apatite structure. Bull. Soc. Chim. Fr. (no special) 2e trimestre, 1712–1718 (1968)Google Scholar
  13. 13.
    Lundy, D. R., Eanes, E. D.: An X-ray line-broadening study of turkey leg tendon. Arch. oral Biol.18, 813–826 (1973)PubMedCrossRefGoogle Scholar
  14. 14.
    Meyer, J. L., Nancollas, G. H.: The influence of multidentate organic phosphonates on the crystal growth of hydroxyapatite. Calcif. Tiss. Res.13, 295–303 (1973)CrossRefGoogle Scholar
  15. 15.
    Nicholas, D. M.: Crystallite size effects on the radial distribution analysis of carbon fibers. J. appl. Cryst.5, 262 (1972)CrossRefGoogle Scholar
  16. 16.
    Posner, A. S., Blumenthal, N. C., Boskey, A. L., Betts, F.: A synthetic analog of bone mineral formation. J. dent. Res. (in press)Google Scholar
  17. 17.
    Termine, J. D., Peckauskas, R. A., Posner, A. S.: Calcium phosphate formation invitro. II. Effects of environment on amorphous-crystalline transformation. Arch. Biochem. Biophys.140, 318–325 (1970)PubMedCrossRefGoogle Scholar
  18. 18.
    White, A., Handler, P., Smith, E. L.: Principles of biochemistry, p. 709. New York: McGraw Hill Book Company 1968Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • N. C. Blumenthal
    • 1
  • F. Betts
    • 1
  • A. S. Posner
    • 1
  1. 1.The Hospital for Special SurgeryCornell University Medical CollegeNew YorkUSA

Personalised recommendations