Calcified Tissue Research

, Volume 18, Issue 1, pp 65–79 | Cite as

HPO42− Content in enamel and artificial carious lesions

  • J. Arends
  • C. L. Davidson
Original Papers

Abstract

The HPO42− and CO32− content was determined in sound enamel and in material collected from artificially produced carious lesions. The method described shows that the HPO42− content can be determined from the 875 cm−1 infrared absorption band if correction for the CO32− contribution are made. The I. R. spectra show that the HPO42− content in sound human or bovine enamel is about 5% by weight. In artificially produced carious lesions (pH=4.0), the HPO42− content is in the order of 15 wt%. Most likely, the HPO42− ions in sound and carious enamel have a different environment.

Key words

Enamel HPO4 CO3 Caries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arends, J., Davidson, C. L.: D.T.A.-T.G.A. investigations on sound and carious enamel. Calcif. Tiss. Res (in press)Google Scholar
  2. Bell, L. C., Posner, A. M., Quirk, J. P.: The point of zero charge of hydroxyapatite and fluoroapatite in aqueous solutions. J. Colloid and Interf. Sci.42, 250–261 (1973)CrossRefGoogle Scholar
  3. Berry, E. E.: Structure and Composition of some Ca deficient Apatites. J. Inorg. Nucl. Chem.29, 317–327 (1967)CrossRefGoogle Scholar
  4. Berry, E. E., Braddiel, C. B.: The Infra-Red Spectrum of Brushite. Spectrochim. Acta23, 2089–2093 (1967)CrossRefGoogle Scholar
  5. Bett, J. A.: Studies of hydrogen held by solids. J. Amer. chem. Soc.89, 5535–5541 (1967)CrossRefGoogle Scholar
  6. Bjerrum, N.: Calcium orthophosphates. Mat. Fys. Medd. K. danske vidensk. Selsk.31, Nr. 7 (1958)Google Scholar
  7. Bonel, G.: De la carbonation des apatites. Ann. Chemique7, 127–144 (1972)Google Scholar
  8. Bonel, G., Montel, G.: Sur une nouvelle apatite carbonatée synthetique. C.R. Acad. Sci. (Paris)258, 923–926 (1964)Google Scholar
  9. Brown, W.: Physiochemical aspects of decay and decalcification. Proceed of an international Symp. on Calcified Tissues (Driessens, F. C., ed.), p. 71–99. Nijmegen 1971Google Scholar
  10. Cant, N. W.: The vibrational spectrum of OH ions in hydroxyapatite. Spectrochim. Acta27, 425–434 (1971)CrossRefGoogle Scholar
  11. Coolidge, T. B., Jacobs, M. H.: Enamel carbonate in caries. J. dent. Res.36, 765–768 (1957)PubMedGoogle Scholar
  12. Corbridge, D. E. C.: Infrared analysis of phosphorus compounds. J. appl. Chem.6, 456–465 (1956)CrossRefGoogle Scholar
  13. Davidson, C. L.: Ontharding van glazuur. Thesis. University of Groningen 1973 (in Dutch)Google Scholar
  14. Davidson, C. L., Boom, G., Arends, J.: Calcium distribution in human and bovine surface enamel. Caries Res.7, 349–359 (1973)PubMedGoogle Scholar
  15. Duff, E. J.: Orthophosphates. J. chem. Soc. A 33–37 (1971)Google Scholar
  16. Elliot, J. C.: Synthetic and biological carbonate containing apatites. Intern. Symp. on structural properties of hydroxyapatite (Young, R. A., Bown, W. E., ed.), chap. 11. New York: Gordon-Breach 1969Google Scholar
  17. Emerson, W. H., Fischer, E. E.: The I.R. absorption spectra of carbonate in calcified tissues. Arch. oral Biol.7, 671–683 (1962)CrossRefGoogle Scholar
  18. Forol, M. A., Wilkinson, C. R.: The preparation and properties of pressed alkalihalide discs. J. Sci. Instrum.31, 338 (1954)CrossRefGoogle Scholar
  19. Francis, M. D.: Solubility behaviour of dental enamel. Amer. N.Y. Acad. Sci.131, 694–712 (1965)CrossRefGoogle Scholar
  20. Gee, A., Deitz, V. R.: Pyrophosphate formation upon ignition of precipitated basic calcium phosphate. J. Amer. chem. Soc.77, 2961–2965 (1955)CrossRefGoogle Scholar
  21. Gray, J. A.: Kinetics of dissolution of enamel in acid. J. dent. Res.41, 633–645 (1962)PubMedGoogle Scholar
  22. Grøn, P., Spinelli, M., Trautz, O., Brudevold, F.: The effect of carbonate on the solubility of hydroxylapatite. Arch. oral. Biol.8, 251–256 (1963)PubMedCrossRefGoogle Scholar
  23. Higuchi, W. I., Patel, P. R., Becker, J. W., Hefferen, J. J.: Quantitation ef enamel demineralization mechanisms. J. dent. Res.48, 396–409 (1971)Google Scholar
  24. Joris, S. J., Amberg, C. H.: The nature of deficiency of non-stoichiometric hydroxyapatite. J. phys. Chem.75, 3172–3179 (1971)CrossRefGoogle Scholar
  25. Kühl, G., Nebergall, W. H.: Hydrogenphosphat- und Carbonatapatite. Z. anorg. allg. Chemie324, 313–320 (1963)CrossRefGoogle Scholar
  26. Legeros, R. Z., Legeros, J. P., Trautz, O. R., Klein, E.: Spectral properties of carbonate in carbonate containing apatites. In: Developments in applied spectroscopy, vol. 7 B (Grove, E. L., ed.), p. 3–12. New York: Plenum Press 1970Google Scholar
  27. Maas van der, J. H.: Basic infrared spectroscopy. London: Heyden and Son 1969Google Scholar
  28. Menzel, B., Amberg, C. H.: An I.R. study of OH grounds in non-stoichiometric hydroxypatite. J. Colloid and Interf. Sci.38, 256–262 (1971)CrossRefGoogle Scholar
  29. Montel, G.: Sur les structures de quelques apatite d’intérêt biologique. Bull. Soc. Fr. Mineral Crist.94, 300–320 (1971)Google Scholar
  30. Moreno, E. C.: Solubility and thermodynamic data for calcium phosphates. Intern. Symp. on structural properties of hydroxyapatite (Young, R. A., Brown, W., eds.), chap. 15. New York: Gorden-Breach 1969Google Scholar
  31. Nancollas, G. H.: Kinetics of dissolution of DCPD crystals. J. dent. Res.50, 1268–1272 (1971)PubMedGoogle Scholar
  32. Neumann, W. F., Mulryan, B. J.: Synthetic hydroxyapatite crystals. Calcif. Tiss. Res.1, 94–104 (1967)CrossRefGoogle Scholar
  33. Neumann, W. F., Toribara, T. Y., Mulryan, B. J.: Surface chemistry of Bone. J. Amer. chem. Soc.78, 4263–4266 (1956)CrossRefGoogle Scholar
  34. Posner, A., Stephenson, S. R.: I.R. study of carbonate in bone, teeth and francolite. Nature10, 124–126 (1954)Google Scholar
  35. Ramsey, D. A.: Intensities and shapes of I.R. absorption bands. J. Amer. chem. Soc.74, 72–80 (1952)CrossRefGoogle Scholar
  36. Römer, F. G., Osch, G. W. S., Griepink, B.: Über die Automatisierung der Kohlenstoff- und Wasserstoffbestimmung in μg-Mengen organischer Substanz. Microchim. Acta 772–777 (1971)Google Scholar
  37. Rootare, H. M., Deitz, V. R., Carpenter, F. G.: Solubility product phenomena in hydroxyapatite water systems. J. Colloid Sci.17, 179–206 (1962)CrossRefGoogle Scholar
  38. Schiedt, U.: Infrarot-Spektroskopie von Aminosäuren. Z. Naturforsch.8b, 66 (1953)Google Scholar
  39. Vignoles, C.: Contribution à l’étude de l’influence des ion alcalins sur la carbonation dans les sites de type B des apatites. Thèse, L’université Paul Sabatier, Toulouse 1973Google Scholar
  40. Weatherell, I. A., Robinson, C., Hiller, C. R.: Distribution of carbonate in thin sections of dental enamel. Caries Res.2, 1–9 (1968)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • J. Arends
    • 1
    • 2
  • C. L. Davidson
    • 1
    • 2
  1. 1.Laboratory for Materia TechnicaUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of Dental MaterialsUniversity of AmsterdamAmsterdamHolland

Personalised recommendations