Facies

, 34:159 | Cite as

The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden

  • Axel Munnecke
  • Christian Samtleben
Article

Summary

Micritic limestone-marl alternations make up the major part of the Silurian strata on Gotland (Sweden). Their position on the stable Baltic Shield protected them from deep burial and tectonic stress and allowed the preservation of early stages of burial diagenesis, including lithification. In the micritic limestones certain characteristics have been preserved (e.g., pitted microspar crystals, sharp boundaries between microspar and components, lack of deformation phenomena) that offer insights into their formation. We suppose the formation of these micritic limestones and limestone-marl alternations to be based on a rhythmic diagenesis within an aragonite solution zone (ASZ) close below the sediment surface. The micritic limestones are the product of a poikilotopic cementation of carbonate muds which consisted of varying portions of aragonitic, calcitic and terrigenous matter. Their microspar crystals show the primary size and shape of the cements lithifying the original carbonate mud. Dissolution of aragonite in the marls provided the carbonate for the lithification of the limestones. By cementation, the limestone beds evaded further compaction. The marls, which already underwent a volume decrease by aragonite depletion, lacked cement and became more and more compacted due to increasing sedimentary overburden. Although field observations show that primary differences in material influence the development of limestone-marl alternations they are not required for their formation.

Keywords

Limestone-Marl Alternations Micritic Limestones Aragonite Diagenesis Micrite Microspar Gotland Silurian 

References

  1. Baird, G. C. (1976): Coral encrusted concretions: a key to recognition of a ‘shale on shale’ erosion surface.—Lethaia9, 293–302, 9 Figs., OsloGoogle Scholar
  2. Bathurst, R. G. C. (1970): Problems of lithification in carbonate muds.—Geologist’s Association Proceedings81, 429–440, LondonGoogle Scholar
  3. — (1975): Carbonate Sediments and their Diagenesis.—Developments in Sedimentology 2nd ed., 658p., 359 Figs., 24 Tables, Amsterdam (Elsevier)Google Scholar
  4. Bathurst, R. G. C. (1980): Lithification of carbonate sediments. —Science Progress66, 451–471, 3 Figs., OxfordGoogle Scholar
  5. — (1987): Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction.—Sedimentology34, 749–778, 28 Figs., 1 Table, OxfordCrossRefGoogle Scholar
  6. — (1991): Pressure-dissolution and limestone bedding: the influence of stratified cementation.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds.): Cycles and Events in Stratigraphy. —450–463, 6 Figs., Berlin (Springer)Google Scholar
  7. — (1993): Microfabrics in carbonate diagenesis: a critical look at forty years in research.—In:Rezak, R. &Lavoie, D. L. (eds.): Carbonate Microfabrics.—3–14, New York (Springer)Google Scholar
  8. Beiersdorf, H. &Knitter, H. (1986): Diagenetic layering and lamination.—Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg60, 267–273, 5 Figs., HamburgGoogle Scholar
  9. Byers, C. W. &Stasko, L. E. (1978): Trace fossils and sedimentologic interpretation-McGregor Member of Platteville Formation (Ordovician) of Wisconsin.—Journal of Sedimentary Petrology48, 1303–1309, 5 Figs., TulsaGoogle Scholar
  10. Canfield, D. E. &Raiswell, R. (1991): Carbonate precipitation and dissolution—its relevance to fossil preservation.—In:Allison, A. &Briggs, D. E. G. (eds.): Taphonomy—Releasing the Data Locked in the Fossil Record.—411–453, 11 Figs., 2 Tables, New York (Plenum Press)Google Scholar
  11. Coniglio, M. &James, M. (1985): Calcified algae as sediment contributors to early Paleozoic limestones: evidence from deep-water sediments of the Cow Head Group, Western Newfoundland.—Journal of Sedimentary Petrology55/5, 746–754, 11 Figs., TulsaGoogle Scholar
  12. Dee, G. T. (1986): Patterns produced by precipitation at a moving reaction front.—Physical Review Letters57/3, 275–278, 4 Figs., 1 Table, New YorkCrossRefGoogle Scholar
  13. Dix, G. R. &Mullins, H. T. (1988): Rapid burial diagenesis of deep-water carbonates: Exuma Sound, Bahamas.—Geology16, 680–683, 3 Figs., BoulderCrossRefGoogle Scholar
  14. Dunham, R. J. (1962): Classification of carbonate rocks according to depositional texture.—American Association of Petroleum Geologists Memoir1, 108–121, 7 Pls., 1 Table, TulsaGoogle Scholar
  15. Ebhardt, G. (1968): Experimental compaction of carbonate sediments.—In:Müller, G. &Friedman, G. M. (eds.): Recent Developments in Carbonate Sedimentology.—58–65, 8 Figs., 1 Table, Berlin (Springer)Google Scholar
  16. Eder, W. (1982): Diagenetic redistribution of carbonate, a process in forming limestone-marl alternations (Devonian and Carboniferous, Rheinisches Schiefergebirge, W. Germany). —In:Einsele, G. &Seilacher, A. (eds.): Cyclic and Event Stratification.—98–112, 12 Figs., Berlin (Springer)Google Scholar
  17. Einsele, G. (1982a): General remarks about the nature, occurrence and recognition of cyclic sequences (periodites).—In:Einsele, G. &Seilacher, A. (eds.): Cyclic and Event Stratification. —3–7, 1 Fig., Berlin (Springer)Google Scholar
  18. — (1982b): Limestone-marl cycles (periodites): diagnosis, significance, causes—a review.—In:Einsele, G. &Seilacher, A. (eds.): Cyclic and Event Stratification.—8–53, 14 Figs., 2 Tables, Berlin (Springer)Google Scholar
  19. Einsele, G. &Ricken, W. (1991): Limestone-marl alternations—an overview.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds.): Cycles and Events in Stratigraphy.—23–47, 10 Figs., 1 Table, Berlin (Springer)Google Scholar
  20. Einsele, G., Ricken, W. &Seilacher, A. (1991): Cycles and events in stratigraphy—basic concepts and terms.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds.): Cycles and Events in Stratigraphy.—1–19, 8 Figs. Berlin (Springer)Google Scholar
  21. Enos, P. &Sawatsky, L. H. (1981): Pore networks in Holocene carbonate sediments.—Journal of Sedimentary Petrology51(3), 961–985, 20 Figs., 4 Tables, TulsaGoogle Scholar
  22. Fischer, A. G., Honjo, S. &Garrison, R. E. (1967): Electron Micrographs of Limestones and their Nannofossils, 141 p. 94 Figs., Princeton (Univ. Press)Google Scholar
  23. Flügel, E. (1967): Elektronenmikroskopische Untersuchungen an mikritischen Kalken.—Geologische Rundschau56, 341–358, 2 Pls., 2 Figs., 1 Table, StuttgartCrossRefGoogle Scholar
  24. Folk, R. L. (1959): Practical petrographic classification of limestones.—American Association of Petroleum Geologists Bulletin43/1, 1–38, 41 Figs., 2 Tables, TulsaGoogle Scholar
  25. Folk, R. L. (1965): Some aspects of recrystallization in ancient limestones. —In:Pray, L.C. & Murray, R.C. (eds.): Dolomitization and limestone diagenesis.—SEPM Special Publication13, 14–48, 14 Figs., 7 Tables, TulsaGoogle Scholar
  26. — (1974): The natural history of crystalline calcium carbonate: effect of magnesium content and salinity.—Journal of Sedimentary Petrology44/1, 40–53, 9 Figs., 1 Table, TulsaGoogle Scholar
  27. Friedman, G. M. (1964): Early diagenesis and lithification in carbonate sediments.—Journal of Sedimentary Petrology34/4, 777–813, 53 Figs., TulsaGoogle Scholar
  28. — (1975): The making and unmaking of limestones or the downs and ups of porosity.—Journal of Sedimentary Petrology45/2, 379–398, 22 Figs., 1 Table, TulsaGoogle Scholar
  29. Frykman, P. (1989): Carbonate ramp facies of the Klinteberg Formation, Wenlock-Ludlow transition on Gotland, Sweden. —Sveriges Geologiska Undersökning Serie C820, 1–79, StockholmGoogle Scholar
  30. Gartner, S. (1977): Nannofossils and biostratigraphy: an overview. —Earth-Science Reviews13, 227–250, 3 Figs., AmsterdamCrossRefGoogle Scholar
  31. Ginsburg, R. N. (1957): Early diagenesis and lithification of shallow-water carbonate sediments in South Florida.—SEPM Special Publication13, 80–99, 18 Figs., TulsaGoogle Scholar
  32. Gründel, J. &Rösler, H. J. (1963): Zur Entstehung der oberdevonischen Kalkknollengesteine Thüringens.—Geologie12, 1009–1038, 23 Figs., 5 Tables, BerlinGoogle Scholar
  33. Hallam, A. (1964): Origin of the limestone-shale rhythm in the Blue Lias of England: a composite theory.—Journal of Geology72, 157–169, 6 Figs., 1 Table, ChicagoCrossRefGoogle Scholar
  34. — (1986): Origin of minor limestone-shale cycles: climatically induced or diagenetic?—Geology14, 609–612, 4 Figs., BoulderCrossRefGoogle Scholar
  35. Halley, R. B. (1987): Burial diagenesis of carbonate rocks.— Colorado School of Mines Quarterly82, 1–15, 16 Figs., GoldenGoogle Scholar
  36. Harland, B., Armstrong, L. L., Cox, A. V., Craig, L. E., Smith, A. G. &Smith, D. G. (1990): A geologic time scale.—263p., Cambridge (Univ. Press)Google Scholar
  37. Hede, J. E. (1921): Gottlands Silurstratigrafi.—Sveriges Geologiska Undersökning Serie C305, 1–100, 12 Figs., StockholmGoogle Scholar
  38. Hede, J. E. (1960): The Silurian of Gotland.—In:Regnéll, G. & Hede, J. E. (eds.): The Lower Paleozoic of Scania.—44–87, 2 Figs., International Geological Congress, Guide to excursions A22 and C17Google Scholar
  39. Henningsmoen, G. (1974): A comment. Origin of limestone nodules in the Lower Palaeozoic of the Oslo Region.—Norsk Geologisk Tidsskrift54, 401–412, 3 Figs., OsloGoogle Scholar
  40. Honjo, S. (1969): Study of fine grained carbonate matrix: sedimentation and diagenesis of ‘micrite’.—Paleontological Society of Japan Special Paper14, 67–82, 2 Tables, TokyoGoogle Scholar
  41. Illies, H. (1949): Über die erdgeschichtliche Bedeutung der Konkretionen.—Zeitschrift der Deutschen Geologischen Gesellschaft101, 95–98, HannoverGoogle Scholar
  42. Jacob, K. H., Dietrich, S. &Krug, H.-J. (1994): Self-organization of mineral fabrics.—In:Kruhl, J. H. (ed.): Fractals and Dynamic Systems in Geoscience.—259–268, 6 Figs., Berlin (Springer)Google Scholar
  43. Jeppsson, L., Viira, V. &Männik, P. (1994): Silurian conodont-based correlations between Gotland (Sweden) and Saaremaa (Estonia).—Geological Magazine131/2, 201–218, 5 Figs., LondonGoogle Scholar
  44. Jones, B., Oldershaw, A. E. &Narbonne, G. M. (1979): Nature and origin of rubbly limestone in the Upper Silurian Read Bay Formation of Arctic Canada.—Sedimentary Geology24, 227–252, 1 Pl., 12 Figs., 1 Table, AmsterdamCrossRefGoogle Scholar
  45. Kennedy, W. J. &Klinger, W. J. (1972): Hiatus concretions and hardgrounds horizons in the Cretaceous of Zululand (South Africa).—Palaeontology15/4, 539–549, 3 Pls., 3 Figs.Google Scholar
  46. Kent, E. (1936): The formation of the hydraulic limestones of the Lower Lias.—Geological Magazine73, 476–478, 2 Figs., LondonCrossRefGoogle Scholar
  47. Lasemi, Z. &Sandberg, P. A. (1983): Recognition of original mineralogy in micrites (abstract).—American Association of Petroleum Geologists Bulletin67, 499–500, TulsaGoogle Scholar
  48. — & — (1984): Transformation of aragonite-dominated lime muds to microcrystalline limestones.—Geology12, 420–423, 1 Fig., BoulderCrossRefGoogle Scholar
  49. Lasemi, Z. &Sandberg, P. A. (1993): Microfabric and compositional clues to dominant mud mineralogy of micrite precursors.—In:Rezak, R. &Lavoie, D. L. (eds.) Carbonate Microfabrics.—173–185, 6 Figs., 2 Tables, New York (Springer)Google Scholar
  50. Lasemi, Z., Sandberg, P. A. &Boardman, M. R. (1990): New microtextural criterion for differentiation of compaction and early cementation in fine-grained limestones.—Geology18, 370–373, 2 Figs., BoulderCrossRefGoogle Scholar
  51. Laufeld, S. &Bassett, M. G. (1981): Gotland: the anatomy of a Silurian carbonate platform.—Episodes2, 23–27, 10 Figs., OttawaGoogle Scholar
  52. Laufeld, S. &Jeppsson, L. (1976): Silification and bentonites in the Silurian of Gotland.—Geologiska Föreningens i Stockholm Förhandlingar98, 31–44, 4 Figs., StockholmGoogle Scholar
  53. Lindström, M. (1979): Diagenesis of Lower Ordovician hardgrounds in Sweden.—Geologica et Palaeontologica13, 9–30, 3 Pls., 5 Figs., MarburgGoogle Scholar
  54. Martinsson, A. (1967): The succession and correlation of ostracode faunas in the Silurian of Gotland.—Geologiska Föreningens i Stockholm Förhandlingar89, 350–386, 2 Figs., StockholmGoogle Scholar
  55. Möller, N.K. &Kvingan, K. (1988): The genesis of nodular limestones in the Ordovician and Silurian of the Oslo Region. —Sedimentology35, 405–420, 8 Figs., 1 Table, OxfordCrossRefGoogle Scholar
  56. Moshier, S. O. (1989): Microporosity in micritic limestones: a review.—Sedimentary Geology63, 191–213, 15 Figs., AmsterdamCrossRefGoogle Scholar
  57. Munnecke, A. & Servais, T.: Scanning electron microscopy of polished, slightly etched rock surfaces: a method to observe palynomorphsin situ.—5 Pls., 3 Figs., submitted to Palynology, DallasGoogle Scholar
  58. Noble, J. A. &Howells, K. D. M. (1974): Early marine lithification of the nodular limestones in the Silurian of New Brunswick. —Sedimentology21, 597–609, 5 Figs., 1 Table, OxfordCrossRefGoogle Scholar
  59. Ortoleva, P. (1994): Geochemical Self-Organization.—Oxford Monographs on Geology and Geophysics23, 411 p., 205 Figs., OxfordGoogle Scholar
  60. Ortoleva, P., Dewers, T. &Sauer, B. (1993): Modeling diagenetic bedding, stylolites, concretions and other mechanochemical structures.—In:Rezak, R. &Lavoie, D. L. (eds.): Carbonate Microfabrics.—291–300, 6 Figs., New York (Springer)Google Scholar
  61. Pray, L. C. (1960): Compaction in calcilutites (abstract).— Bulletin of the Geological Society of America71, 1946, BoulderGoogle Scholar
  62. Raiswell, R. (1987): Non-steady state microbiological diagenesis and the origin of concretions and nodular limestones.—In:Marshall, J. D. (ed): Diagenesis of Sedimentary Sequences. —Geological Society Special Publication36, 41–54, 6 Figs., LondonGoogle Scholar
  63. — (1988a): Chemical model for the origin of limestone-shale cycles by anaerobic methane oxidation.—Geology16, 641–644, 2 Figs., 1 Table, BoulderCrossRefGoogle Scholar
  64. — (1988b): Evidence for surface reaction-controlled growth of carbonate concretions in shales.—Sedimentology35, 571–575, 2 Figs., OxfordCrossRefGoogle Scholar
  65. Ricken, W. (1986): Diagenetic bedding—a model for marllimestone alternations.—Lecture Notes in Earth Sciences6, 1–210, 94 Figs., 19 Tables, BerlinCrossRefGoogle Scholar
  66. — (1992): A volume and mass approach to carbonate diagenesis: the role of compaction and cementation.—In:Wolf, K. H. &Chilingarian, G. V. (eds.): Diagenesis, III.—291–316, 10 Figs., Amsterdam (Elsevier)Google Scholar
  67. Ricken, W. &Eder, W. (1991): Diagenetic modification of calcareous beds—an overview.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds.): Cycles and Events in Stratigraphy.— 430–449, 11 Figs., Berlin (Springer)Google Scholar
  68. Sandberg, P. A. (1983): An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy.—Nature305/1, 19–22, 6 Figs., LondonCrossRefGoogle Scholar
  69. Scholle, A. & Halley, R. B. (1985): Burial diagenesis: out of sight, out of mind!—In:Schneiderman, N. & Harris, M. (eds.): Carbonate Cements.—SEPM Special Publication36, 309–334, 11 Figs., TulsaGoogle Scholar
  70. Seibold, E. (1952): Chemische Untersuchungen zur Bankung im unteren Malm Schwabens.—Neues Jahrbuch Geologie und Paläontologie Abhandlungen95/3, 337–370, 11 Figs., 2 Tables, StuttgartGoogle Scholar
  71. — (1962): Kalk-Konkretionen und karbonatisch gebundenes Magnesium.—Geochimica et Cosmochimica Acta26, 899–909, 8 Figs., 1 Table, LondonCrossRefGoogle Scholar
  72. Semper, M. (1917): Schichtung und Bankung.—Geologische Rundschau7, 53–56, StuttgartCrossRefGoogle Scholar
  73. Shinn, E. A., Halley, R. B., Hudson, J. H. &Lidz, B. H. (1977): Limestone compaction: an enigna.—Geology5, 21–24, 5 Figs., BoulderCrossRefGoogle Scholar
  74. Sorby, H. C. (1879): The structure and origin of limestones. Anniversary address of the President.—Quarterly Journal of the Geological Society of London35, 56–95, 11 Figs., 2 Tables, LondonGoogle Scholar
  75. Stehli, F. G. &Hower, J. (1961): Mineralogy and early diagenesis of carbonate sediments.—Journal of Sedimentary Petrology31/3, 358–371, 11 Figs., 4 Tables, TulsaGoogle Scholar
  76. Steinen, R. (1978): On the diagenesis of lime mud: scanning electron microscopic observations of subsurface material from Barbados, W.I.—Journal of Sedimentary Petrology48/4, 1139–1148, 7 Figs., TulsaGoogle Scholar
  77. Steinen, R. (1982): SEM observations on the replacement of Bahaman aragonitic mud by calcite.—Geology10, 471–475, 3 Figs., BoulderCrossRefGoogle Scholar
  78. Sujkowski, Z. L. (1958): Diagenesis.—American Association of Petroleum Geologists Bulletin42/11, 2692–2717, 1 Table, TulsaGoogle Scholar
  79. Sundquist, B. (1982): Wackestone petrography and bipolar orientation of cephalopods as indicators of littoral sedimentation in the Ludlovian of Gotland.—Geologiska Föreningens i Stockholm Förhandlingar104, 81–90, 6 Figs., 1 Table, StockholmGoogle Scholar
  80. Tappan, H. &Loeblich, A. R. Jr. (1973): Evolution of the oceanic plankton.—Earth-Science Reviews9, 207–240, 9 Figs., AmsterdamCrossRefGoogle Scholar
  81. Terzaghi, R. D. (1940): Compaction of lime mud as a cause of secundary structure.—Journal of Sedimentary Petrology10/2, 78–90, 5 Figs., 2 Tables, TulsaGoogle Scholar
  82. Towe, K. M. &Hemleben, C. (1976): Diagenesis of magnesian calcite: evidence from miliolacean foraminifera.—Geology4, 337–339, 1 Fig., BoulderCrossRefGoogle Scholar
  83. Voigt, E. (1968): Über Hiatus-Konkretionen (dargestellt an Beispielen aus dem Lias).—Geologische Rundschau58, 281–296, 8 Figs., StuttgartCrossRefGoogle Scholar
  84. Walter, L. M. (1985): Relative reactivity of skeletal carbonates during dissolution: implications for diagenesis.—In:Schneidermann, N. & Harris, M. (eds.): Carbonate Cements. —SEPM Special Publication36, 3–16, 6 Figs., 5 Tables, TulsaGoogle Scholar
  85. Walther, M. (1982): A contribution to the origin of limestoneshale sequences.—In:Einsele, G. &Seilacher, A. (eds.): Cyclic and Event Stratification.—113–120, 2 Figs., Berlin (Springer)Google Scholar
  86. Walther, M. (1983): Diagenese gebankter Karbonate im Unter-Karbon Nordwest-Irlands.—76p., 12 Pls., 28 Figs., 13 Tables, Doctoral Dissertation Universität Göttingen, GöttingenGoogle Scholar
  87. Watts, N. R. (1981): Sedimentology and diagenesis of the Högklint reefs and their associated sediments, Lower Silurian, Gotland, Sweden.—407p., Doctoral Dissertation University Cardiff (Wales) CardiffGoogle Scholar
  88. Weber, P. (1969): Bildung und Regelung von Kalkknollengefügen im Oberdevon des Rheinischen Schiefergebirges.—Fortschritte in der Geologie von Rheinland und Westfalen17, 81–94, 7 Figs., KrefeldGoogle Scholar
  89. Weller, J. M. (1959): Compaction of sediments.—American Association of Petroleum Geologists Bulletin43/2, 273–311, 16 Figs., 1 Table, TulsaGoogle Scholar
  90. Wepfer, E. (1926): Die Auslaugungs-Diagenese, ihre Wirkung auf Gestein und Fossilinhalt.—Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilagen-Band, Abteilung B, Geologie und PaläontologieLIV, 17–94, 9 Figs., StuttgartGoogle Scholar
  91. Winland, H. D. (1968): The role of high Mg calcite in the preservation of micrite envelopes and textural features of aragonite sediments.—Journal of Sedimentary Petrology38/4, 1320–1325, 7 Figs., TulsaGoogle Scholar
  92. Zankl, H. (1969): Structural and textural evidence of early lithification in fine-grained carbonate rocks.—Sedimentology12, 241–256, 7 Figs., AmsterdamCrossRefGoogle Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1996

Authors and Affiliations

  • Axel Munnecke
    • 1
  • Christian Samtleben
    • 1
  1. 1.Geologisch-Paläontologisches Institut und Museum der Universität KielKielGermany

Personalised recommendations