Journal of the American Oil Chemists’ Society

, Volume 72, Issue 3, pp 375–378

Margarines: A rheological study

  • J. A. Segura
  • M. L. Herrera
  • M. C. Añón


Time-dependent flow properties of both commercial and pilot plant-made margarines were characterized under steady shear. Flow curves were fitted to the kinetic expression τ = τi +a e−k1t +b e−k2t. A first-order kinetic model did not describe the observed destruction process of the margarine structure in an adequate manner. In the proposed model, two structures with different destruction rates are postulated. Each structure contributes to a part of the shear stress necessary to deform the margarine sample. The parameters τia andb are temperature-dependent. Decreasing temperatures produce an exponential increase of τi, a linear increase ofb and an increase ofa up to a point beyond which it remains constant. A physical interpretation of the model is proposed. The role of the aqueous phase was also studied. Greater hardness was detected at higher water content. Parameter τi increased, at any selected temperature, with increasing aqueous phase content of the sample. Parametera increased with decreasing temperatures and higher water content. On the other hand, parameterb was not affected by the amount of aqueous phase. This kinetic model could be employed to perform studies on the influence of different parameters of margarine formulation on its rheologic behavior.

Key words

Different water contents margarine mathematical model physical interpretation rheology texture thixotropic behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis, S.S.,J. Texture Stu. 4:15 (1973).Google Scholar
  2. 2.
    Figoni, P.I., and C.F. Shoemaker, Ibid.:431 (1983).Google Scholar
  3. 3.
    Vaisey-Genser M., B.K. Vane and S. Johnson, Ibid.:347 (1989).Google Scholar
  4. 4.
    Teasdale, B.F., G.F. Helmel and C.E. Swindells,Proceedings of International Conference on Scientific Technology and Marketing of Rapeseed and Rapeseed Products, Rapeseed Association of Canada, 1970, pp. 190–202.Google Scholar
  5. 5.
    De Man, J.M.,Proceedings of 1st International Congress Food Science Technology, London, 1962, pp. 795–806.Google Scholar
  6. 6.
    Haighton, A.J.,J. Am. Oil Chem. Soc. 42:201 (1965).Google Scholar
  7. 7.
    Van Den Tempel, M.,J. Coll. Sci. 16:284 (1961).CrossRefGoogle Scholar
  8. 8.
    Bailey, A.E.,Melting and Solidification of Fats, Interscience Publishers, New York, 1950, p. 4.Google Scholar
  9. 9.
    Stern, P.,J. Am. Oil Chem. Soc. 53:644 (1976).Google Scholar
  10. 10.
    Green, H., and R.N. Weitmann,Ind. Eng. Chem. 15:201 (1943).CrossRefGoogle Scholar
  11. 11.
    Andrade, C.,Nature 125:309 (1930).Google Scholar

Copyright information

© AOCS Press 1995

Authors and Affiliations

  • J. A. Segura
    • 1
  • M. L. Herrera
    • 2
  • M. C. Añón
    • 2
  1. 1.Molinos Río de La PlataBuenos AiresArgentina
  2. 2.Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations