Journal of the American Oil Chemists’ Society

, Volume 69, Issue 2, pp 130–136 | Cite as

Neutron diffraction studies of liquid and crystalline trilaurin

  • Deryck J. Cebula
  • D. Julian McClements
  • Malcolm J. W. Povey
  • Paul R. Smith
Article

Abstract

Neutron diffraction has been employed to investigate the structure of trilaurin in both liquid and crystalline states. The combination of long-wavelength (4.5 Å) neutrons and wide angular ranges of detection (∼6<2θ[o]<∼100) per mitted a large range of momentum transfer to be acceessed (∼0.15<Q[Å−1]<∼2) in a single scan of the detector. The chemical technique of selective deuteration of chosen parts of the triglyceride molecules was used to enhance specific aspects of the diffraction pattern and elucidate structures formed. The well established layer structure in the solid phases was confirmed in the diffraction patterns. It was also established that long-range ordering in the solid resulting from chain-chain registry disappeared when the solid melts. However, we found no evidence for long-range ordering in the form of persistence of a layer-layer spacing correlation in the liquid state. We postulate from the diffraction patterns a molecular arrangement resembling the arrangement found in the nematic phase of liquid crystals, where the layer structure is relaxed from that smectic-like arrangement for the crystalline phase. The data also reveal that this lack of order is not dependent on temperature in the liquid phase and persists into the super-cooled region below the normal β melting point.

Key Words

Crystals layer structures liquids neutron diffraction selective deuteration triglycerides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larsson, K.,Fette. Seifen Anstrichm. 74:136 (1972).CrossRefGoogle Scholar
  2. 2.
    Hoerr, C.V., and H.J. Yarwood,J. Phys. Chem. 60:1265 (1956).CrossRefGoogle Scholar
  3. 3.
    Phillips, L.W.,Trans. Farad. Soc. 60:1873) (1964).CrossRefGoogle Scholar
  4. 4.
    Callaghan, P.T., and K.W. Jolley,J. Chem. Phys. 67:4773 (1977).CrossRefGoogle Scholar
  5. 5.
    Norton, I.T., C.D. Lee-Tufnell, S. Ablett and S.M. Bociek,J. Am. Oil Chem. Soc. 62:1237 (1985).Google Scholar
  6. 6.
    Lippert, I.L., and W.L. Peticolas,Proc. Natl. Acad. Sci. USA 68:1572 (1972).CrossRefGoogle Scholar
  7. 7.
    Cebula, D.J., D.J. McClements and M.J.W. Povey,J. Am. Oil Chem. Soc. 67:76 (1990).Google Scholar
  8. 8.
    Institut Laue-Langevin, Grenoble, France,Neutron Research Facilities at the High Flux Reactor, Instrument Manual, 1983, pp. 32–33.Google Scholar
  9. 9.
    Chapman, D.,The Structure of Lipids, Methuen & Co. Ltd., London, 1965, p. 266.Google Scholar
  10. 10.
    Hernquist, L.,Fette. Seifen Anstrichm. 84:297 (1986).Google Scholar
  11. 11.
    Lister, D.J., and Birgeneau, R.J.,Physics Today, May, 26 (1982).CrossRefGoogle Scholar
  12. 12.
    Pynn, R., K. Otnes and T. Riste,Solid State Communications 11:1365 (1972).CrossRefGoogle Scholar
  13. 13.
    Povey, M.J.W., and D.J. McClements, inFood Colloids, edited by R. Bee, P. Richmond and J. Mingins, Royal Society of Chemistry, 1988, pp. 307–322.Google Scholar
  14. 14.
    Kratky, O., H. Leopold, and H. Stabinger,Calculating Digital Density Meter DMA45, Anton Paar, Graz, Austria, 1985.Google Scholar

Copyright information

© AOCS Press 1992

Authors and Affiliations

  • Deryck J. Cebula
    • 1
  • D. Julian McClements
    • 2
  • Malcolm J. W. Povey
    • 2
  • Paul R. Smith
    • 1
  1. 1.Unilever ResearchColworth LaboratorySharnbrookU.K.
  2. 2.Proctor Department of Food ScienceThe UniversityLeedsU.K.

Personalised recommendations