Advertisement

Facies

, Volume 26, Issue 1, pp 81–101 | Cite as

The biology of carbonate precipitation by cyanobacteria

  • Martina U. E. Merz
Article

Summary

In the freshwater areas of the Everglades, Florida, U.S.A., carbonate is precipitated in dense cyanobacterial mats. Precipitation is linked with photosynthesis in the mats in a quantitative relationship.

On ground of field observations and experiments a model for precipitation in the filamentous cyanobacteriaScytonema is proposed, which links precipitation to bicarbonate use in photosynthesis and subsequent release of OH ions.

Besides supersaturation of the water with respect to carbonate and photosynthetic bicarbonate use, precipitation requires a suitable sheath structure and composition. The characteristics of the sheath seem to be responsible for a distinct crystal morphology in the two generaScytonema andSchizothrix, as well as for the restriction of calcification to the outer sheath inScytonema. In the immediate vicinity of the trichom precipitation seems to be inhibited.

Comparison of this form of calcifying cyanobacteria with calcification in calcareous algae shows many similarities and rises the question of the biological significance of calcification or precipitation.

The precipitated carbonate shows equilibrium precipitation in its δ oxygen values, while it is enriched in13C relative to the ambient water. This agrees with a model of precipitation in which the carbonate derives from the water immediately surrounding the filament. There the water is depleted in12C which is preferably taken up for photosynthesis. No respiratory carbon is involved in precipitation.

From measurements of the amount of precipitation in the field and in experiments the annual sedimentation rate is estimated to be 0.024 to 0.24 mm. These values fall within the range of laminae thicknesses in fossil algal laminites.

Keywords

Cyanobacteria Schizothrix, Scytonema Calcification Stableisotopes Freshwater Carbonate Everglades (Florida) Recent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addadi, L. &Weiner, S. (1985): Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. —Proc. Natl. Acad. Sci. U.S.A.,82/6, 4110–4114, 5 Figs., WashingtonCrossRefGoogle Scholar
  2. Badger, M.R. &Andrews, T.J. (1982): Photosynthesis and inorganic carbon usage by the marine cyanobacterium,Synechococcus sp..—Plant Physiol.,70/2, 517–523, 9 Figs., 1 Tab., Lancaster, Pa.Google Scholar
  3. Badger, M.R., Bassett, M. &Commins, H.N. (1985): A model of HCO3 accumulation and photosynthesis in the cyanobacteriumSynechococcus sp.,—Plant Physiol.,77/2, 465–471, 7 Figs., Lancaster, Pa.Google Scholar
  4. Badger, M.R. &Price, G.D. (1989): Carbonic anhydrase activity associated with the cyanobacteriumSynechococcus PCC 7942. —Plant Physiol.,88/1, 51–60, 2 Tabs., 5 Figs., Lancaster, Pa.Google Scholar
  5. Borowitzka, M.A. (1982): Mechanisms in algal calcification.— In:Round, F.E., Chapman, D.J. (eds.): Progress in Phycological Research, vol.1, 137–178, 11 Figs., 2 Tab., Amsterdam (Elsevier Biomedical Press)Google Scholar
  6. — (1986): Physiology and biochemistry of calcification in the Chlorophyceae.— In:Leadbeater, B.S.C., Riding, R. (eds.): Biomineralization in Lower Plants and Animals.—The Systematic Association, Spec. Vol. 30, 400 pp., 107–124, 2 Figs., 1 Tab., Oxford (Clarendon Press)Google Scholar
  7. Borowitzka, M.A. (1989): Carbonate calcification in algae-Initiation and control.—In:Mann, S., Webb, J., Williams, R.J.P. (eds.): Biomineralization: chemical and biochemical perspectives. — 541 pp., 63–94, 10 Figs., 4 Tabs., Weinheim (VCH Verlagsgesellschaft mbH)Google Scholar
  8. Borowitzka, M.A. &Larkum, A.W.D. (1976): Calcification of the green algaeHalimeda; IV. The action of metabolic inhibitors on the photosynthesis and calcification.—J. Exp. Bot.,27, 894–907, 5 Figs., 4 Tabs., OxfordGoogle Scholar
  9. — & — (1977): Calcification in the green algaeHalimeda; I: An ultrastucture study of thallus development.—J. Phycol.,13/1, 6–16, 24 Figs., New YorkCrossRefGoogle Scholar
  10. Braithawatie, C.J.R., Casanova, J., Frevert, F., Whitton, B.A. (1989): Recent stromatolites in landlocked pools on Aldabra, western Indian Ocean.—Paleogeogr., Paleoclimat., Paleoecol.,69/3–4, 145–165, 4 Pls., 23 Figs., AmsterdamCrossRefGoogle Scholar
  11. Calder, J.A., Parker, P.L. (1973): Geochemical implications of induced changes in 13C fractionation by blue-green algae.— Geochim. Cosmochim. Acta,37/1, 133–140, 2 Figs., 3 Tabs., New YorkCrossRefGoogle Scholar
  12. Castenholz, R.W. (1982): Motility and taxes.—Carr, N.G. &Whitton, B.A. (eds.): The Biology of Cyanobacteria.— 688 pp., 414–439, Oxford (Blackwell)Google Scholar
  13. Cox, G., James, J.M., Leggett, K.E.A., Osborne, R., Armstrong, L. (1989): Cyanobacterially deposited speleothems: subaerial stromatolites.—Geomicrobiol. J., 7, 245–252, 7 Figs., New YorkGoogle Scholar
  14. Cummings, C.E., McCarthy, H.M. (1982): Stable carbon istope ratios inAstrangia danae: evidence for algal modification of carbon pools used in calcification.—Geochim. Cosmochim. Acta,46/6, 1125–1129, 2 Figs., 2 Tabs., New YorkCrossRefGoogle Scholar
  15. Defarge, C., Trichet, J., Sin, P. (1985): First data on the biogeochemistry of Kopara deposits from Rangiroa Atoll.— Proceed. 5th Int. Coral Reef Congress, Tahiti,3, 365–370, 6 Figs., 2 Tabs., MooreaGoogle Scholar
  16. Drever, J. (1988): The Geochemistry of Natural Waters.— 2nd Ed., 437 pp., Englewood Cliffs (Prentice Hall)Google Scholar
  17. Epstein, S. &Mayeda, T. (1953): Variation of18O content of waters from natural sources.—Geochim. Cosmochim. Acta,4/5, 213–224, 3 Figs., 1 Tab., New YorkCrossRefGoogle Scholar
  18. Espie, G.S., Miller, A.G. &Canvin, D.T. (1989): Selective and reversible inhibition of active CO2 transport by hydrogen sulfide in a cyanobacterium.—Plant. Physiol.,91/1, 387–294, 7 Figs., Lancaster, Pa.Google Scholar
  19. Estep, M.F. (1984): Carbon and hydrogen isotopic compositions of algae and bacteria from hydrothermal environments, Yellowstone National Park.— Geochim. Cosmochim. Acta,48/3, 591–599, 6 Figs., 10 Tabs., New YorkCrossRefGoogle Scholar
  20. Fritz, P., Poplawski, S. (1974): 18O and 13C in the sheaths of freshwater molluscs and their environments.—Earth Planet. Sci. Lett.,24, 91–98, 6 Figs., 1 Tab., AmsterdamCrossRefGoogle Scholar
  21. Gieskes, J. (1986): Water chemistry procedures aboard Joides Resolution-some coments.-Ocean Drilling Program, Technical Note No.5, 46 pp., College StationGoogle Scholar
  22. Giraud, G. &Cabioch, J. (1979): Ultrastructure and the elaboration of calcified cell-walls in the coralline algae (Rhodophyta, Cryptonemiales).—Biol. Cellulaire,36, 81–86, ParisGoogle Scholar
  23. Gleason, P.J. (1972): The origin, sedimentation and stratigraphy of a calcitic mud located in the southern fresh-water Everglades. —PhD-Thesis, Pennsylvania State Univ., 355 pp., University ParkGoogle Scholar
  24. Gleason, P.J. & Spackman, W.Jr. (1974): Calcareous periphyton and water chemistry in the Everglades.—In:Gleason, P.J. (ed.): Environments in South Florida, Present and Past.—146–181, 34 Figs., 9 Tab., MiamiGoogle Scholar
  25. Golubic, S. (1972): The relationship between blue-green algae and carbonate deposits.—In:Carr, N.G. &Whitton, B.A. (eds.): The Biology of Blue-Green Algae.—676 pp., 434–472, 19 Figs., Oxford (Blackwell)Google Scholar
  26. — (1983): Stromatolites, fossil and recent: a case history.—In:Westbroek, P., de Jong, E.W. (eds.). Biomineralization and biological metal accumulation.—313–326, 6 Figs., Dordrecht (Reidel)Google Scholar
  27. Golubic, S. &Campbell, S.E. (1981): Biogenically formed aragonite concretions in marineRivularia.—In:Monty, C. (ed.): Phanerozoic Stromatolites: Case histories.—249 pp., 209–229, 3 Pls., 2 Figs., 1 Tab., Berlin (Springer)Google Scholar
  28. Gran, G. (1952): Determination of the equivalence point in potentiometric titrations, Part I.—Analyst,77, 661–671, LondonCrossRefGoogle Scholar
  29. Greenfield, E.M., Wilson, D.C. &Crenshaw, M.A. (1984): Ionotropic nucleation of calcium carbonate by molluscan matrix. —Am. Zool.,24/4, 925–932, 7 figs., Bloomington, IndianaGoogle Scholar
  30. Häder, D.-P. (1987): Photomovement.—In:Fay, P., Van Baalen, C. (eds.): The Cyanobacteria.—325–345, 10 Figs., 1 Tab., Amsterdam (Elsevier)Google Scholar
  31. Hardie, L.A. &Ginsburg, R.N. (1977): Layering: The origin and environmental significance of lamination and thin bedding.— In:Hardie, A. (ed.): Sedimentation on the Modern Carbonate Tidal Flats of NW Andros-Island, Bahamas.—Johns Hopkins Univ. Studies in Geol.,22, 203 pp., 50–123, 94 Figs., 16 Tabs., BaltimoreGoogle Scholar
  32. Helder, R.J. (1988): A quantitative approach to the inorganic carbon in aqueous media used in the biological research; dilute solutions isolated from the atrnosphere.—Plant Cell Environment,11, 211–230, 4 Figs., 5 Tabs., OxfordCrossRefGoogle Scholar
  33. Horodyski, R.J. &Vonder Haar, S.P. (1975): Recent calcareous stromatolites from Laguna Mormona (Baja California) Mexico. —J. Sed. Petrol.,45/4, 894–906, 7 Figs., TulsaGoogle Scholar
  34. Jones, B. &Kahle, C.F. (1986): Dendritic calcite crystals formed by calcification of algal filaments in a vadose environment.—J. Sed. Petrol.,56/2, 217–222, 7 Figs., TulsaGoogle Scholar
  35. Kaplan, A. (1981): Photoinhibition inSpirulina platensis: Response of photosynthesis and HCO3 uptake capability to CO2-depleted conditions.—J. Exp. Bot.,32/2, 669–677, 4, Figs., 1 Tab., OxfordGoogle Scholar
  36. — (1981): Photoinhibition inSpirulina platensis: Response of photosynthesis and HCO3-uptake capability to CO2-depleted conditions.—J. Exp. Bot.,32/2, 669–677, 4 Figs., 1 Tab., OxfordGoogle Scholar
  37. Kaplan, A. (1985): Adaptation to CO2 levels: Induction and the mechanism for inorganic carbon uptake.—In:Lucas, W.J. & Berry, J.A. (eds.) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms.—Am. Soc. Plant Physiol., 325–338, 9 Figs., Rockville, MD.Google Scholar
  38. Kaplan, A., Marcus, Y., Zenvirth, D., Omata, T., Reinhold, L. &Ogawa, T. (1987): The mechanism of inorganic carbon uptake by cyanobacteria: energetization and activation by light.—In:Biggins, J. (ed.): Progress in Photosynthesis Research, vol. IV, 6.301–6.307, 8 Figs., Dordrecht (M. Nijhoff Publ.)Google Scholar
  39. Kazmierczak, J., Itiekot, V. &Degens, E.T. (1985): Biocalcification through time: environmental challenge and cellular response.— Paläontolog. Zeitschr.,59/1–2, 15–33, 6 Figs., StuttgartGoogle Scholar
  40. Keith, M.L. &Weber, J.N. (1965): Systematic relationships between carbon and oxygen isotopes in carbonates deposited by modern corals and algae.—Science,150, 498–501, 2 Figs., 1 Tab., WashingtonCrossRefGoogle Scholar
  41. Kempe, S. &Kazmierczak, J. (1990): Calcium carbonate supersaturation and the formation of in situ calcified stromatolites.— In:Ittekkot, V, Kempe, S., Michaelis, W., Spitzy, A. (eds.): Facets of modern biogeochemistry, 433 pp., 161 Figs, 255–278, 4 Figs., 4 Tabs., Berlin (Springer)Google Scholar
  42. Krause, G.H. (1988): Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms.—Physiol. Plant.,74/3, 566–574, 2 Figs., CopenhagenCrossRefGoogle Scholar
  43. Krumbein, W.E. &Giele, C. (1979): Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites. —Sedimentology,26/4, 593–604, 9 Figs., AmsterdamCrossRefGoogle Scholar
  44. Krumbein, W.E. &Potts, M. (1979): Girvanella-like stuctures formed by Plectonema gloeophilum (Cyanophyta) from the Borrego desert in Southern California.—Geomicrobiol. J.,1/3, 211–217, 4 Figs., 1 Tab., New YorkGoogle Scholar
  45. Leinfelder, R.R. (1985): Cyanophyta calcification, morphotypes and depositional environments (Alenquer oncolite, Upper Kimmeridgian?. Portugal).—Facies,12, 253–274, 2 Pls., 3 Figs., 2 Tab., ErlangenCrossRefGoogle Scholar
  46. Littler, M.M. (1976): Calcification and its role among macroalgae. —Micronesia,12/1, 27–41, 7 Figs., 3 Tabs., AganaGoogle Scholar
  47. Lucas, W.J. (1979): Alkaline band formation in Chara corallina.— Plant Physiol.,63/2, 248–254, 9 Figs., 1 Tab., Lancaster, Pa.Google Scholar
  48. Lucas, W.J. (1983): Photosynthetic assimilation of exogenous HCO3-by aquatic plants.—Ann. Rev. Plant Physiol.,34, 71–104, 5 Figs., Palo Alto, Pa.CrossRefGoogle Scholar
  49. Lyons, B.W., Long, D.T., Hines, M.E., Gaudette, H.E., Armstrong, P.B. (1984): Calcification of cyanobacterial mats in Solar Lake, Sinai.—Geology,12/10, 623–626, 1 Fig., 2 Tabs., BoulderCrossRefGoogle Scholar
  50. McConaughey, T. (1989):13C and18O isotopic disequilibrium in biological carbonates: I. patterns.—Geochim. Cosmochim. Acta,53/1, 151–162, 15 Figs., 2 Tabs., New YorkCrossRefGoogle Scholar
  51. Merz, M.U.E. (1990): Karbonatfällung durch Cyanobakterien im Süßwasserbereich der Everglades, Florida.—unpubl. PhD-Thesis, Univ. of Marburg, 71 pp., 19 Figs., 7 Tabs., MarburgGoogle Scholar
  52. Merz, M.U.E. & Zankl, H. (submitted): The influence of the sheath on carbonate precipitation by cyanobacteria.—submitted to Boll. Soc. Pal. Italiana, ModenaGoogle Scholar
  53. Miller, A.G. &Colman, B. (1980): Evidence for HCO3-transport by the blue, green alga (cyanobacterium)Coccochloris peniocystis. —Plant Physiol.65/2, 397–402, 7 Figs., Lancaster, Pa.Google Scholar
  54. Miller, A.G., Espie, G.S. &Canvin, D.T. (1990): Physiological aspects of CO2 and HCO3-transport by cyanobacteria: areview. —Can. J. Bot.,68/6, 1291–1302, 10 Figs., OttawaGoogle Scholar
  55. Millero, F.J. (1979): The thermodynamics of the carbonate systems in seawater.—Geochim. Cosmochim. Acta,43/10, 1651–1661, 9 Figs., 9 Tabs., New YorkCrossRefGoogle Scholar
  56. Monty, C.L.V. (1972): Recent algal stromatolitic deposits, Andros Island, Bahamas, Preliminary report.—Geol. Rdsch.,61, 742–783, 32 Figs., 1 Tab., StuttgartCrossRefGoogle Scholar
  57. Mook, W. G. & Vogel, J.C. (1968): Isotopic equilibrium between shells and their environment.—Science,159, No. 3817, 1 Fig., WashingtonGoogle Scholar
  58. Müller-Jungbluth, W.-U. (1968): Sedimentary petrologic investigation of the Upper Triassic ‘Hauptdolomit’ of the Lechtaler Alps, Tirol, Austria.—In:Müller, G. &Friedman, G. (eds.) Recent Developments in Carbonate Sedimentology in Central Europe.—255 pp., 228–239, 14 Figs., Berlin (Springer)Google Scholar
  59. Müller-Jungbluth, W.-U. (1970): Sedimentologische Untersuchung des Hauptdolomit der Östlichen Lechtaler Alpen, Tirol.-Festbd. Geol. Inst. 300-J.-Feier Univ. Innsbruck, 255–308, InnsbruckGoogle Scholar
  60. Obenlüneschloss, J. &Schneider, J. (1990): Ecology and calcification patterns of Rivularia (Cyanobacteria).—In:Anagnostidis, K., Hickel, B. &Komarek, J. (eds.) Proc. 11th Symp. IAC.— Arch. Hydrobiol., Suppl. Vol., Algological Studies, BerlinGoogle Scholar
  61. Ogawa, T. &Kaplan, A. (1987): A model for inorganic carbon accumulation in cyanobacteria.—In:Biggins, J. (ed.): Progress in Photosynthesis Research, vol. IV.—6.297–6.300, 3 Figs., 1 Tab., Dordrecht (M. Nijhoff Publ.)Google Scholar
  62. Paasche, E. (1964): A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi.—Physiol. Plant. (suppl.) III, 1–82, CopenhagenGoogle Scholar
  63. Pentecost, A. (1978): Blue-green algae and freshwater carbonate deposits.—Proc. R. Soc. London, Ser. B,200, 43–61, 1 Pl., 11 Figs., 10 Tab., LondonGoogle Scholar
  64. — (1980): Calcification in plants.—Int. Rev. Cytol.,62, 1–26, 2 Tabs., New YorkCrossRefGoogle Scholar
  65. — (1984): Effects of sedimentation and light intensity on a matforming Oscillatoriacea with particular reference toMicrocoleus lyngbyaceus Gomont.—J. Gen. Microbiol.130, 983–990, 4 Figs., LondonGoogle Scholar
  66. — (1985): Association of cyanobacteria with tufa deposits: Identity, enumeration, and nature of the sheath material revealed by histochemistry.—Geomicrobiol. J.,4/3, 286–297, 7 Tab., New YorkGoogle Scholar
  67. — (1988): Observations on the growth and calcium carbonate deposition in the green alga Gongrosira.—New Phytol.,110/2, 2 Figs., 7 Tab., 249–253, LondonCrossRefGoogle Scholar
  68. Pentecost, A. &Riding, R. (1986): Calcification in cyanobacteria. —In:Leadbeater, B.S.C., Riding, R. (ed.) The Systematic Association, Spec. Vol. 30, Biomineralization in Lower Plants and Animals.—400 pp., 73–90, 6 Figs., Oxford (Clarendon Press)Google Scholar
  69. Prins, H.B.A. &Elzenga, J.T.M. (1989): Bicarbonate utilization: Function and mechanism.—Aquatic Bot.,34/1, 59–83, 3 Figs., 1 Tab., AmsterdamCrossRefGoogle Scholar
  70. Price, G.D. &Badger, M.R. (1989a): Ethoxyzolamide inhibition of CO2 uptake in the cyanobacterium Synechococcus PCC 7942 without apparent inhibition of internal carbonic anhydrase activity.—Plant Physiol.,89/1, 37–43, 8 Figs., Lancaster, Pa.Google Scholar
  71. Price, G.D. &Badger, M.R. (1989b): Ethoxyzolamide inhibition of CO2-dependent photosynthesis in the cyanobacterium Synechococcus PCC 7942.—Plant Physiol.,89/1, 44–50, 3 Figs., 8 Tabs., Lancaster, Pa.Google Scholar
  72. Raven, J.A. & Lucas, W.J. (1985): Energy costs of carbon acquisition.—In:Lucas, W.J., & Berry, J.A. (eds.): Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms.—Am. Soc. Plant Physiol., 305–325, RockvilleGoogle Scholar
  73. Raven, J.A., Smith, F.A. &Walter, N.A. (1986): Biomineralization in the Charophyceae sensu lato.—In:Leadbeater, S.C., Riding, R. (eds.) The Systematic Association, Spec. Vol. 30, Biomineralization in Lower Plants and Animals.—400 pp., 125–139, 1 Tab., Oxford (Clarendon Press)Google Scholar
  74. Reinhold, L., Zviman, M. &Kaplan, A. (1987): Inorganic carbon fluxes in cyanobacteria: A quantitative model.—In:Biggins, J. (eds.): Progress in Photosynthesis Research, vol. IV, 6.289–6.296, 6 Figs., Dordrecht (M. Nijhoff Publ.)Google Scholar
  75. Riding, R. (1977a): CalcifiedPlectonema (blue-green algae), a recent example ofGirvanella from Aldabra Atoll.—Palaeontology,20/1, 33–46, 1 Pl., 5, Figs., LondonGoogle Scholar
  76. — (1977b): Problems of affinity in Paleozoic calcareous algae.— In:Flügel, E. (ed.): Fossil algae, recent results and developements.— 375 pp., 202–211, 2 Tabs., Berlin (Springer)Google Scholar
  77. — (1982): Cyanophyte calcification and changes in ocean chemistry. —Nature,299, No. 5886, 814–815, 1 Fig., LondonCrossRefGoogle Scholar
  78. Rowland, S.M. &Gangloff, R.A. (1988): Structure and paleoecology of Lower Cambrian reefs.—Palaios,3, Reefs Issue, 111–135, 18 Figs., TulsaGoogle Scholar
  79. Rubinson, M. &Clayton, R.N. (1969): Carbon-13 fractionation between aragonite and calcite.—Geochim. Cosmochim. Acta,33/8, 997–1002, 3 Tabs., New YorkCrossRefGoogle Scholar
  80. Sabater, S. (1989): Encrusting algal assemblages in a mediterranean river basin.—Arch. Hydrobiol.,114/4, 555–573, 5 Figs., 6 Tabs., BerlinGoogle Scholar
  81. Scherer, S., Riege, H. &Böger, P. (1988a): Light-induced proton efflux of the cyanobacteriumAnabaena variabilis.—In:Rogers, L.J., Gallon, J.P. (eds.) Biochemistry of the algae and cyanbacteria. —121–129, Oxford (Clarendon Press)Google Scholar
  82. Scherer, S., Chen, T.W. &Böger, P. (1988b): A new UV-A/B absorbing pigment in the terrestrial cyanobacgerium Nostoc commune.—Plant Physiol.,88/2, 1055–1057, 4 Figs., 1 Tab., Lancaster, Pa.Google Scholar
  83. Scholl, D.W., Craighead, F.C. &Stuiver, M. (1969): Florida submergence curve revised: its relation to coastal sedimentation. —Science,163, No. 3867, 562–564, 3 Figs., WashingtonCrossRefGoogle Scholar
  84. Sharkey, T.D. & Berry, J.A. (1985): Carbon isotope fractionation of algae as influenced by an inducible CO2 concentrating mechanism.—In:Lucas, W.J. & Berry, J.A. (eds.) Inorganic carbon uptake by aquatic photosynthetic organisms.—Am. Soc. Plant Physiol., 389–403, 4 Figs., 1 Tab., RockvilleGoogle Scholar
  85. Sikes, C.S., Roer, R.D. &Wilbur, K.M. (1980): Photosynthesis and coccolith formation: Inorganic carbon sources and net inorganic reaction of deposition.—Limnol. Oceanogr.,25/2, 248–261, 7 Figs., 2 Tabs., BaltimoreGoogle Scholar
  86. Sikes, C.S. &Wilbur, K.M. (1982): Functions of coccolith formation. —Limnol. Oceanogr.,27/1, 18–26, 3 Figs., 3 Tabs., BaltimoreCrossRefGoogle Scholar
  87. Somers, G.F. &Brown, M. (1978): The affinity of trichomes of blue-green algae for calcium ions.—Estuaries,1, 17–28, 2 Figs., 7 Tabs., SolomonsCrossRefGoogle Scholar
  88. Swart, P.K. (1983): Carbon and oxygen isotope fractionation in scleractinian corals: a review.—Earth Sci. Rev.,19, 51–80, 10 Figs., AmsterdamCrossRefGoogle Scholar
  89. Swart, P.K., Sternberg, L.D.S.L., Steinen, R. &Harrison, S.A. (1989): Controls on the oxygen and hydrogen isotopic composition of the waters of Florida Bay, U.S.A..—Chem. Geol., Isotope Geosci.,10, 113–125, 8 Figs., 2 Tabs., AmsterdamCrossRefGoogle Scholar
  90. Tuffery, A.A. (1969): Light and electron microscopy of the sheath of a blue-green alga.—J. Gen. Microbiol.,57/1, 41–50, 5 Plts., LondonGoogle Scholar
  91. VanLiere, L. &Walsby, A.E. (1982): Interactions of cyanobacteria with light.—In: Carr, N.G., Whitton, B.A. (eds.): The Biology of Cyanobacteria.—Bot. Monographs, Vol.19, 688 pp. 9–45, 13 Figs., 2 Tabs., Oxford (Blackwell)Google Scholar
  92. Volokita, M., Zenvirth, D., Kaplan, A. &Reinhold, L. (1984): Nature of the inorganic carbon species actively taken up by the cyanobacterium Anabaena variabilis.—Plant Physiol.76/3, 599–602, 5 Figs., LancasterCrossRefGoogle Scholar
  93. Walsby, A.E. (1968): Mucilage secretion and the movement of blue-green algae.—Protoplasma,65/1–2, 223–238, 17 Figs., WienCrossRefGoogle Scholar
  94. Weckesser, J., Hofmann, K., Jürgens, U.J., Whitton, B.A. &Raffelsberger, B. (1988): Isolation and chemical analysis of the sheaths of the filamentous cyanobacteriaCalothrix parietina andC. scopulorum.—J. Gen. Microbiol.,134/3, 629–634, 1 Fig., 2 Tabs., LondonGoogle Scholar
  95. Wheeler, A.P. &Sikes, S. (1984): Regulation of carbonate calcification by organic matrix.—Amer. Zool.,24/4, 933–944, 3 Figs., 1 Tab., Bloomington, IndianaGoogle Scholar
  96. Wolk, P.C. (1973): Physiology and cytobiological chemistry of blue-green algae.—Bacteriological Rev.,37/1, 32–101, 16 Figs., 11 Tabs., BaltimoreGoogle Scholar

Copyright information

© Institut für Palaentologie, Universitat Erlangen 1992

Authors and Affiliations

  • Martina U. E. Merz
    • 1
  1. 1.Institut für Geologie und PaläontologieMarburg

Personalised recommendations