Microbial Ecology

, Volume 21, Issue 1, pp 227–251 | Cite as

Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria

  • Peter Kämpfer
  • Martin Steiof
  • Wolfgang Dott


Seven soil samples and seven groundwater samples from a site contaminated with fuel-oil were investigated using several chemical and microbiological techniques. In soil samples, 500 to 7,500 mg/kg of total hydrocarbons were found. These samples contained no n-alkanes but iso- and branched chain alkanes. No polychlorinated biphenyls could be detected. Microbiological investigations included estimations of total cell counts, viable cell counts on different media, and numbers of methylotrophic, denitrifying, sulphate reducing, anaerobic (with the exception of methanogenic organisms), and hydrocarbon degrading bacteria. Viable and hydrocarbon degrading bacteria were found in all samples. A total of 1,366 pure cultures was characterized morphologically and physiologically and identified by numerical identification using a data base of more than 4,000 reference strains. Groundwater samples were dominated by gram-negative bacteria of the generaPseudomonas, Comamonas, Alcaligenes, andAcinetobacter, which were also found in soil samples. In addition, more grampositive bacteria belonging to the generaArthrobacter, Nocardia, andBacillus could be isolated from soil samples.


Soil Sample Groundwater Sample Heterotrophic Bacterium Soil Bacterium Arthrobacter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Appelbaum PC, Leathers DJ (1984) Evaluation of the rapid NFT system for identification of gram-negative, nonfermenting rods. J. Clin. Microbiol. 20:730–734PubMedGoogle Scholar
  2. 2.
    Austin B, Garges S, Conrad B, Harding EE, Colwell RR, Simudu U, Taga N (1979) Comparative study of aerobic, heterotrophic bacteria flora of Chesapeake Bay and Tokyo Bay. Appl Environ Microbiol 37:704–714PubMedGoogle Scholar
  3. 3.
    Bianchi MAG, Bianchi AJM (1982) Statistical sampling of bacterial strains and its use in bacterial diversity measurements. Microb Ecol 8:61–69.CrossRefGoogle Scholar
  4. 4.
    Brock TD (1987) The study of microorganisms in situ: Progress and problems. In: Ecology of microbial communities. Symposium 41. The Society for General Microbiology, Cambridge University Press, Cambridge, pp 1–17Google Scholar
  5. 5.
    Buchanan-Mappin JM, Wallis PM, Buchanan AG (1986) Enumeration and identification of heterotrophic bacteria in groundwater and in mountain stream. Can J Microbiol 32:93–98Google Scholar
  6. 6.
    Busse HJ, Auling G (1989) Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Appl Environ Microbiol 55:1578–1583PubMedGoogle Scholar
  7. 7.
    Dawson CW, Sneath PHA (1985) A probability matrix for identification of vibrios. J Appl Bacteriol 58:407–423PubMedGoogle Scholar
  8. 8.
    Deutsche Einheitsverfahren zur Wasseruntersuchung (DEV) (1971) Mikrobiologische Verfahren Gruppe K5:1–8.Google Scholar
  9. 9.
    De Vos P, De Ley J (1983) Intra- and intergeneric similarities ofPseudomonas andXanthomonas ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 33:487–509CrossRefGoogle Scholar
  10. 10.
    Doetsch RN (1981) Determinative methods in light microscopy. In: Manual of methods for general microbiology, American Society for Microbiology, Washington, pp 21–33Google Scholar
  11. 11.
    Dott W, Thofern E (1982) Qualitative und quantitative Bestimmung von Bakterienpopulationen aus aquatischen Biotopen. 2. Mitteilung: Anwendung miniaturisierter Systeme zur Identifizierung und Biotypisierung von Bakterien unter Verwendung der Vielpunktbeimpfungsmethode. Zbl Bakt Hyg B 176:189–201Google Scholar
  12. 12.
    Dott W, Kämpfer P (1988) Biochemical methods for automated bacterial identification and testing metabolic activities in water and wastewater. Wat Sci Technol 20:221–227Google Scholar
  13. 13.
    Dott W, Trampisch HJ (1983) Qualitative und quantitative Bestimmung von Bakterienpopulationen aus aquatischen Biotopen. 5. Mitteilung: Vergleichende Untersuchungen an zwei Schnellsandfiltern. Zbl Bakt Hyg B 177:141–155Google Scholar
  14. 14.
    Feltham RKA, Sneath PHA (1982) Construction of matrices for computer assisted identification of aerobic gram-positive cocci. J Gen Microbiol 128:713–720PubMedGoogle Scholar
  15. 15.
    Fry JC, Zia T (1982) Viability of heterotrophic bacteria in freshwater. J Gen Microbiol 128:2841–2850Google Scholar
  16. 16.
    Ghiorse WC, Blackwill DL (1983) Enumeration and morphological characterization of bacteria indigenous to subsurface environments. Dev Ind Microbiol 24:213–224Google Scholar
  17. 17.
    Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. Methods in Microbiology 5B:209–344CrossRefGoogle Scholar
  18. 18.
    Hill LR, Lapage SP, Bowie IS (1978) Computer assisted identification of coryneform bacteria. In: Bousfield IJ, Callely AG (eds) Coryneform bacteria. Academic Press, London, pp 181–215Google Scholar
  19. 19.
    Hobbie JE, Daley RJ, Jasper S (1977) Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl Env. Microbiol 33:1225–1228Google Scholar
  20. 20.
    Holmes B, Hill LR (1985) Computers in diagnostic bacteriology, including identification. In: Goodfellow M, Jones D, Priest FG (eds) Computer assisted bacterial systematics, Academic Press, London, pp 265–287Google Scholar
  21. 21.
    Holmes B, Pinning CA, Dawson CA (1986) A probability matrix for the identification of gramnegative, aerobic, non-fermentative bacteria that grow on Nutrient-agar. J Gen Microbiol 132:1827–1842PubMedGoogle Scholar
  22. 22.
    Holmes B, Dawson CA, Pinning CA (1986) A revised probability matrix for the identification of gram-negative, aerobic rod shaped fermentative bacteria. J Gen Microbiol 132:3113–3135PubMedGoogle Scholar
  23. 23.
    Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J Bacteriol 66:24–26PubMedGoogle Scholar
  24. 24.
    Jones JG (1987) Diversity in freshwater microbiology. In Ecology of microbial communities. Symposium 41. The Society for General Microbiology. Cambridge University Press, Cambridge, pp 235–259Google Scholar
  25. 25.
    Kämpfer P, Dott W (1989) Evaluation of the Titertek-NF system for identification of gramnegative nonfermentative and oxidase-positive fermentative bacteria. J Clin Microbiol 27:1201–1205PubMedGoogle Scholar
  26. 26.
    Kämpfer P (1990) Evaluation of the Titertek-Enterobac-Automated system (TTE-AS) for identification of members of the family Enterobacteriaceae. Zbl Bakt 273:164–172Google Scholar
  27. 27.
    Kölbel-Boelke J, Tienken B, Nehrkorn A (1988) Microbial communities in the saturated groundwater environment. I: Methods for isolation and characterization of heterotrophic bacteria. Microb Ecol 16:17–29CrossRefGoogle Scholar
  28. 28.
    Kölbel-Boelke J, Anders EM, Nehrkorn A (1988) Microbial communities in the saturated groundwater environment. II: Diversity of bacterial communities in a pleistocene sand aquifer and their in vitro activities. Microb Ecol 16:31–48CrossRefGoogle Scholar
  29. 29.
    Langham CD, Williams ST, Sneath PHA, Mortimer AM (1989) New probability matrices for identification ofStreptomyces. J Gen Microbiol 135:121–133PubMedGoogle Scholar
  30. 30.
    Lapage SP, Bascomb S, Willcox WR, Curtis MA (1973) Identification of bacteria by computer: General aspects and perspectives. J Gen Microbiol 77:273–299PubMedGoogle Scholar
  31. 31.
    Logan N, Berkeley RCW (1984) Identification ofBacillus strains using the API system. J Gen Microbiol 130:1871–1882PubMedGoogle Scholar
  32. 32.
    Olsen RA, Bakken LR (1987) Viability of soil bacteria: Optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microbial Ecol 13:59–74CrossRefGoogle Scholar
  33. 33.
    Overbeck J, Chrost RJ (1990) Aquatic microbial ecology. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  34. 34.
    Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. In: Marshall KC (ed) Advances in microbial ecology, vol. 9. Plenum Press, New York, pp 1–55Google Scholar
  35. 35.
    Parkes RJ (1987) Analysis of microbial communities within sediments using biomarkers. In: Ecology of microbial communities. Symposium 41. The Society of General Microbiology. Cambridge University Press, Cambridge, pp 147–177Google Scholar
  36. 36.
    Pfennig N, Lippert KD (1966) Über das Vitamin B12 Bedürfnis phototropher Schwefelbakterien. Arch Microbiol 55:245–256Google Scholar
  37. 37.
    Priest FG, Alexander B (1988) A frequency matrix for probabilistic identification of some bacilli. J Gen Microbiol 134:3011–3018PubMedGoogle Scholar
  38. 38.
    Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Env Microbiol 49:1–7Google Scholar
  39. 39.
    Smith GA, Nickels JS, Kerger BD, Davis JD, Collins SP (1985) Quantitative characterization of microbial biomass and community structure in subsurface material: A procaryotic consortium responsive to organic contamination. Can J Microbiol 32:104–111Google Scholar
  40. 40.
    Sneath PHA (1979) BASIC program for identification of an unknown with presence-absence data against an identification matrix of percent positive characters. Computers and Geosciences 5:195–213CrossRefGoogle Scholar
  41. 41.
    Weller R, Ward DM (1989) Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl Env Microbiol 55:1818–1822Google Scholar
  42. 42.
    Willcox WR, Lapage SP, Bascomb S, Curtis MA (1973) Identification of bacteria by computer: Theory and programming. J Gen Microbiol 77:317–330PubMedGoogle Scholar
  43. 43.
    Willcox WR, Lapage SP, Holmes B (1980) A review of numerical methods in bacterial identification. Ant v Leeuwenhoek 46:233–299CrossRefGoogle Scholar
  44. 44.
    Williams ST, Goodfellow M, Wellington EMH, Vickers JC, Alderson G, Sneath PHA, Sackin MJ, Mortimer AM (1983) A probability matrix for identification of some streptomycetes. J Gen Microbiol 129:1815–1830PubMedGoogle Scholar
  45. 45.
    Wilson JT, McNabb JF, Blackwill DL, Ghiorse WC (1983) Enumeration and characterization of bacteria indigenous to a shallow watertable aquifer. Ground Water 21:134–142CrossRefGoogle Scholar
  46. 46.
    Wilson JT, McNabb JF, Wilson BH, Noonan NJ (1983) Biotransformation of selected organic pollutants in groundwater. Dev Ind Microbiol 24:225–233Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Peter Kämpfer
    • 1
  • Martin Steiof
    • 1
  • Wolfgang Dott
    • 1
  1. 1.Fachgebiet Hygiene der Technischen Universität BerlinBerlin 65Federal Republic of Germany

Personalised recommendations