Advertisement

Materials Science

, Volume 32, Issue 1, pp 80–86 | Cite as

How fast can a crack go?

  • K. B. Broberg
Article

Abstract

The assumption of a material specific relation between the energy dissipation at the edge of a crack propagating under small scale yielding conditions leads to upper limits of the crack velocity: the Rayleigh wave velocity for modes I and II, and theS wave velocity for mode III. If a mode II crack can pass the “forbidden” subsonic super-Rayleigh region, then the upper limit would be theP wave velocity. Experiments invariably show lower maximum speeds, typically less than 60% of theS wave velocity, but they also frequently show accelerations to a constant velocity, depending on the acceleration history, and increasing surface roughness, even during the constant velocity phase. Other experiments show that the energy dissipation at the crack edge usually is several times larger at very high than at very low velocities. These results indicate a considerable growth of the process region, so much that the intrinsic length parameter which determines its height at very low crack speeds becomes insignificant, and then the rationale for a material specific relation between energy dissipation and velocity disappears. This disappearance can contribute to the explanation of the experimental results.

Keywords

Stress Intensity Factor Energy Dissipation Wave Velocity Energy Flux Crack Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Schardin, “Ergebnisse der kinematographischen Untersuchung des Glasbruchvorganges”,Glastechnische Berichte,23, 1–10, 67–69, 325–336 (1950).Google Scholar
  2. 2.
    H. Schardin, “Velocity effects in fracture”, in: B. L. Averbach, D. K. Felbeck, G. T. Hahn, and D. A. Thomas (editors),Fracture, John Wiley & Sons, New York (1959), pp. 297–329.Google Scholar
  3. 3.
    K. B. Broberg, “On the speed of a brittle crack”,J. Appl. Mech.,31, 546–547 (1964).Google Scholar
  4. 4.
    K. B. Broberg, “Discussion of fracture from the energy point of view”, in: B. Broberg, J. Hult, and F. Niordson (editors),Recent Progress in Applied Mechanics, Almquist and Wiksell, Stockholm (1967), pp. 125–151.Google Scholar
  5. 5.
    K. B. Broberg, “Intersonic bilateral slip”,Geophys. J. International,119, 706–714 (1994).Google Scholar
  6. 6.
    G. I. Barenblatt, “The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks”,Prikl. Mekh. Mater.,23, 434–444 (1959);English translation: J. Appl. Mech,23, 622–636 (1959).Google Scholar
  7. 7.
    M. Ya. Leonov and V. V. Panasyuk, “Development of the smallest cracks in a solid body”,Prikl. Mekh.,5, 391–401 (1959).Google Scholar
  8. 8.
    V. V. Panasyuk, “To the theory of crack propagation in deformed brittle body”Dopov. Akad. Nauk Ukr. SSR,9, 1185–1188 (1960).Google Scholar
  9. 9.
    D. S. Dugdale, “Yielding of steel sheets containing slits”,J. Mech. Phys. Solids,8, 100–104 (1960).CrossRefGoogle Scholar
  10. 10.
    R. J. Archuleta, “Analysis of near source static and dynamic measurements from the 1979 Imperial Valley earthquake,”Bull. Seismolog. Soc. Amer.,72, 1927–1956 (1982).Google Scholar
  11. 11.
    C. H. Scholtz,The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge.Google Scholar
  12. 12.
    K. B. Broberg, “On dynamic crack propagation in elastic-plastic media”, in: G. C. Sih (editor),Proceedings of the International Conference on Dynamic Crack Propagation, Noordhoff International Publishing, Leyden (1973), pp. 461–499.Google Scholar
  13. 13.
    T. L. Paxson and R. A. Lucas, “An experimental investigation of the velocity characteristics of a fixed boundary fracture model”, in: G. C. Sih (editor),Proceedings of the International Conference on Dynamic Crack Propagation, Noordhoff International Publishing, Leyden (1973), pp. 415–426.Google Scholar
  14. 14.
    K. B. Broberg, “On the behaviour of the process region at a fast running crack tip”, in: K. Kawata and J. Shioiri (editors),High Velocity Deformation of Solids, Springer-Verlag, Berlin-Heidelberg (1979), pp. 182–194.Google Scholar
  15. 15.
    K. B. Broberg, “Twilight zone of fracture”, in: V. V. Panasyuk, D. M. R. Taplin, M. C. Pandey, O. Ye. Andreykiv, R. O. Ritchie, J. F. Knott, and P. Rama Rao (editors),Advances in Fracture Resistance and Structural Integrity, Pergamon, Oxford (1994). pp. 59–66.Google Scholar
  16. 16.
    J. F. Kalthoff, “On some current problems in experimental fracture mechanics”, in:Workshop on Dynamic Fracture, California Institute of Technology, Pasadena (1983), pp. 11–35.Google Scholar
  17. 17.
    K. Ravi-Chandar,An Experimental Investigation into the Mechanics of Dynamic Fracture, Ph. D. Thesis, California Institute of Technology, Pasadena (1982).Google Scholar
  18. 18.
    K. Ravi-Chandar and W. G. Knauss, “An experimental investigation into dynamic fracture: I. Crack initiation and arrest”,Int. J. Fract.,25, 247–262 (1984); “II. Microstructural aspects”,Int. J. Fract.,26, 65–80 (1984); “III. On steady-state crack propagation and crack branching”,Int. J. Fract.,26, 141–154 (1984); “IV. On the interaction of stress waves with propagating cracks”,Int. J. Fract.,26, 189–200 (1984).CrossRefGoogle Scholar
  19. 19.
    K. Takahashi and K. Arakawa, “Dependence of crack acceleration on the dynamic stress-intensity factor in polymers”Experim. Mech.,27, 195–200 (1987).CrossRefGoogle Scholar
  20. 20.
    K. Arakawa and K. Takahashi, “Relationship between fracture parameters and fracture surface roughness of brittle polymers”,Int. J. Fract.,48, 103–114 (1991).CrossRefGoogle Scholar
  21. 21.
    L. B. Freund, “Some theoretical results on the dependence of the dynamic stress intensity factor on crack tip speed”, in:Workshop on Dynamic Fracture, California Institute of Technology, Pasadena (1983), pp. 129–136.Google Scholar
  22. 22.
    J. W. Dally, W. L. Fourney and G. R. Irwin, “On the uniqueness of the stress intensity factor-crack velocity relationship”,Int. J. Fract.,27, 159–168 (1985).CrossRefGoogle Scholar
  23. 23.
    W. Yang and L. B. Freund, “Transverse shear effects for through-cracks in an elastic plate”,Int. J. Solids Struct.,21, 977–994 (1985).CrossRefGoogle Scholar
  24. 24.
    A. J. Rosakis and K. Ravi-Chandar, “On crack-tip stress state: an experimental evaluation of three-dimensional effects”,Int. J. Solids Struct.,22, 121–134 (1986).CrossRefGoogle Scholar
  25. 25.
    L. B. Freund and A. J. Rosakis, “The structure of the near-tip field during transient elastodynamic crack growth”,J. Mech. Phys. Solids,40, 699–719 (1992).CrossRefGoogle Scholar
  26. 26.
    C. Liu, A. J. Rosakis and L. B. Freund, “The interpretation of optical caustics in the presence of dynamic non-uniform crack-tip motion histories: A study based on a higher order transient crack-tip expansion”,Int. J. Solids Struct.,30, 875–897 (1993).CrossRefGoogle Scholar
  27. 27.
    H. Gao, “Surface roughening and branching instabilities in dynamic fracture”,J. Mech. Phys. Solids,41, 457–486 (1993).CrossRefGoogle Scholar
  28. 28.
    L. I. Slepyan, “Principle of maximum energy dissipation rate in crack dynamics”,J. Mech. Phys. Solids,41, 1019–1033 (1993).CrossRefGoogle Scholar
  29. 29.
    P. D. Washabaugh and W. G. Knauss, “A reconciliation of dynamic crack velocity and Rayleigh wave speed in isotropic brittle solids”,Int. J. Fract.,65, 97–114 (1994).Google Scholar
  30. 30.
    E. Johnson, “Process region changes for rapidly propagating cracks”,Int. J. Fract.,55, 47–63 (1992).CrossRefGoogle Scholar
  31. 31.
    E. Johnson, “Process region influence on crack branching”,Int. J. Fract.,57, R27-R29 (1992).CrossRefGoogle Scholar
  32. 32.
    E. Johnson, “Process region influence on energy release rate and crack tip velocity during rapid crack propagation”,Int. J. Fract.,61, 183–187 (1993).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • K. B. Broberg

There are no affiliations available

Personalised recommendations