, Volume 25, Issue 7, pp 383–390 | Cite as

Cell separation ofTethya aurantia, an analytical study of embryonic and differentiated sponge cells

  • Mary P. Zimmerman
  • Max Hoberg
  • Eser Ayanoglu
  • Carl Djerassi


The cells of the spongeTethya aurantia var.californiana were separated on a Ficoll density gradient and the fractions analyzed for cell types and their lipids. Major cell types were choanocyte, archeocyte, and symbiont. Major differences in archeocyte and choanocyte fatty acid composition were noted for 20∶4, 26∶1 and 26∶2. The fatty acids 26∶1, 26∶2, and 28∶3 were dominant in the phosphatidylcholine fraction. Archeocytes had highest concentrations of 4,7,10,13–20∶4 and 5,8,11,14–20∶4 (arachidonic) acids which could be derived from symbionts, as odd-chain and methyl-branched fatty acid were also present. Sterol analyses showed cholesterol as a major sterol of the sponge cell fractions and clionasterol (or its 24-isomer) as a major sterol in symbiont cells.


Sponge Phospholipid Class Equivalent Chain Length High Performance Liquid Chromatog Sponge Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



butylated hydroxytoluene


equivalent chain length


gas chromatography


gas chromatography/mass spectrometry


high performance liquid chromatography


nuclear magnetic resonance




thin-layer chromatography


4,8,12-trimethyltridecanoic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilson, H.V. (1912)Bull. Bur. Fisheries 30, 3–30.Google Scholar
  2. 2.
    Moscona, A.A. (1963)Proc. Natl. Acad. Sci. USA 49, 742–747.PubMedCrossRefGoogle Scholar
  3. 3.
    Humphreys, T. (1963)Dev. Biol. 8, 27–47.CrossRefGoogle Scholar
  4. 4.
    Müller, W.E.G., Rottmann, M., Diehl-Seifert, B., Kurelec, B., Uhlenbruck, G., and Schröder, H.C. (1987)J. Biol. Chem. 262, 9850–9858.PubMedGoogle Scholar
  5. 5.
    Weissmann, G., Riesen, W., Davidson, S., and Waite, M. (1988)Biochim. Biophys. Acta 960, 351–364.PubMedGoogle Scholar
  6. 6.
    Berridge, M.J. (1984)Biochem. J. 220, 345–360.PubMedGoogle Scholar
  7. 7.
    Buscema, M., De Sutter, D., and Van de Vyver, G. (1980)Wihelm Roux Arch. 188, 45–53.CrossRefGoogle Scholar
  8. 8.
    Simpson, T.L (1984)The Cell Biology of Sponges, pp. 42–114, Springer-Verlag, New York.Google Scholar
  9. 9.
    Turner, R.S. (1978) inSponge Cell Adhesions in Receptors and Recognition: Specificity of Embryological Interactions, Series B, Vol. 4, pp. 201–229, Chapman and Hall, London.Google Scholar
  10. 10.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. (1983)Molecular Biology of the Cell, pp. 686–692, Galand Publishing Inc., New York.Google Scholar
  11. 11.
    Bagby, R. (1970)Z. Zellforsch. 105, 579–594.PubMedCrossRefGoogle Scholar
  12. 12.
    Müller, W.E.G. (1982) inInternational Review of Cytology (Bourne, G.H., and Danielli, J.F., eds.) Vol. 77, pp. 129–181, Academic Press, New York.Google Scholar
  13. 13.
    Zimmerman, M.P., Thomas, F.C., Thompson, J.E., Djerassi, C., Streiner, H., Evans, E., and Murphy, P.T. (1989)Lipids 24, 210–216.PubMedGoogle Scholar
  14. 14.
    Litchfield, C., and Morales, R.W. (1976) inAspects of Sponge Biology (Harrison, F.W., and Cowden, R.R., eds.) pp. 183–200, Academic Press, New York.Google Scholar
  15. 15.
    Hayat, M.A. (1970) inPrinciples and Techniques of Electron Microscopy: Biological Applications, Vol. 1, pp. 63–64, Van Nostrand Reinhold Co., New York.Google Scholar
  16. 16.
    Oliveira, L., Burns, A., Bisalputra, T., and Yang, K.-C. (1983)J. Microscopy 132, 195–202.Google Scholar
  17. 17.
    Reynolds, E.S. (1963)J. Cell Biol. 17, 208–212.PubMedCrossRefGoogle Scholar
  18. 18.
    Thompson, J.E., Barrow, K.D., and Faulkner, D.J. (1983)Acta Zool. 64, 199–210.CrossRefGoogle Scholar
  19. 19.
    Andersson, B.A. (1978)Prog. Chem. Fats Other Lipids 16, 279–308.PubMedCrossRefGoogle Scholar
  20. 20.
    Fishelson, L. (1981)Zoomorphology 98, 89–99.CrossRefGoogle Scholar
  21. 21.
    Kennedy, G.Y., and Vevers, H.G. (1954)J. Mar. Biol. Assoc. U.K. 33, 663–676.CrossRefGoogle Scholar
  22. 22.
    Simpson, T.L. (1984)The Cell Biology of Sponges, p. 123, Springer-Verlag, New York.Google Scholar
  23. 23.
    Gillian, F.T., Stoilov, I.L., Thompson, J.E., Hogg, R.W., Wilkinson, C.R., and Djerassi, C. (1988)Lipids 23, 1139–1145.CrossRefGoogle Scholar
  24. 24.
    Walkup, R.D., Jamieson, G.C., Ratcliff, M.R., and Djerassi, C. (1981)Lipids 16, 631–646.CrossRefGoogle Scholar
  25. 25.
    Kaneda, T. (1977)Bacteriological Reviews41, 391–418.PubMedGoogle Scholar
  26. 26.
    Erwin, J. (1973) inLipids and Biomembranes of Eukaryotic Microorganisms (Erwin, J.A., ed.), pp. 42–136, Academic Press, New York.Google Scholar
  27. 27.
    Rawls, K. (1987)Chem. Eng. News, 24, 24–39.Google Scholar
  28. 28.
    Macara, I.G. (1985)Am. J. Physiol. (Cell Physiol. 17), C3-C11.Google Scholar
  29. 29.
    Berridge, M.Y., and Irvine, R.F. (1984)Nature 312, 315–321.PubMedCrossRefGoogle Scholar
  30. 30.
    Harwood, J.L., and Russell, N.J. (1984) inLipids in Plants and Microbes, pp. 35–150, George Allen and Unwin, London.Google Scholar
  31. 31.
    Kerr, R.G., Stoilov, I.L., Thompson, J.E., and Djerassi, C. (1989)Tetrahedron 45, 1887–1903.CrossRefGoogle Scholar
  32. 32.
    Djerassi, C. (1981)Pure Appl. Chem. 53, 873–890.Google Scholar
  33. 33.
    Djerassi, C. (1984) inNatural Products and Drug Development (Krogsgaard-Larsen, P., Brøgger Christensen, S., and Kofod, H., eds.) pp. 164–178, Munksgaard, Copenhagen, Denmark.Google Scholar
  34. 34.
    Minale, L. (1976)Pure Appl. Chem. 48, 7–23.Google Scholar
  35. 35.
    Bergquist, P.R., Hofheinz, W., and Oesterhelt, G. (1980)Biochem. Syst. Ecol. 12, 63–84.CrossRefGoogle Scholar
  36. 36.
    Litchfield, C., Greenberg, A.J., Noto, G., and Morales, R.W. (1976)Lipids 11, 567–570.PubMedGoogle Scholar
  37. 37.
    Morales, R.W., and Litchfield, C. (1976)Biochim. Biophys. Acta 431, 206–216.PubMedGoogle Scholar
  38. 38.
    Dembitskii, B.M. (1981)Khim. Prir. S.4, 513–515.Google Scholar
  39. 39.
    Ayanoglu, E., Popov, S., Kornprobst, J.M., Aboud-Bichara, A., and Djerassi, C. (1983)Lipids 18, 830–836.Google Scholar
  40. 40.
    Dasgupta, A., Ayanoglu, E., and Djerassi, C. (1984)Lipids 19, 768–776.PubMedCrossRefGoogle Scholar
  41. 41.
    Lawson, M.P., Thompson, J.E., and Djerassi, C. (1988)Lipids 23, 741–749.PubMedCrossRefGoogle Scholar
  42. 42.
    Lawson, M.P., Thompson, J.E., and Djerassi, C. (1988)Lipids 23, 1037–1048.PubMedCrossRefGoogle Scholar
  43. 43.
    Tyrrell, D. (1968)Lipids 3, 368–372.CrossRefPubMedGoogle Scholar
  44. 44.
    Ourisson, G., Rohmer, M., and Poralla, K. (1987)Ann. Rev. Microbiol. 41, 301–333.CrossRefGoogle Scholar
  45. 45.
    Ourisson, G., and Rohmer, M. (1982)Current Topics in Membranes and Transport 17, 153–182.Google Scholar
  46. 46.
    Itoh, T., Sica, D., and Djerassi, C. (1983)J. Chem. Soc. Perkin Trans. I, 147–153.CrossRefGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1990

Authors and Affiliations

  • Mary P. Zimmerman
    • 1
  • Max Hoberg
    • 1
  • Eser Ayanoglu
    • 1
  • Carl Djerassi
    • 1
  1. 1.Department of ChemistryStanford UniversityStanford

Personalised recommendations