Lipids

, Volume 30, Issue 3, pp 221–226 | Cite as

Cloning of the late genes in the ergosterol biosynthetic pathway ofSaccharomyces cerevisiae—A review

  • N. D. Lees
  • B. Skaggs
  • D. R. Kirsch
  • M. Bard
Symposium

Abstract

Research on the ergosterol biosynthetic pathway in fungi has focused on the identification of the specific sterol structure required for normal membrane structure and function and for completion of the cell cycle. The pathway and its end product are also the targets for a number of antifungal drugs. Identification of essential steps in ergo-sterol biosynthesis could provide new targets for the development of novel therapeutic agents. Nine of the eleven genes in the portion of the pathway committed exclusively to ergosterol biosynthesis have been cloned, and their essentiality for aerobic growth has been determined. The first three genes;ERG9 (squalene synthase),ERG1 (squalene epoxidase), andERG7 (lanosterol synthase), have been cloned and found to be essential for aerobic viability since their absence would result in the cell being unable to synthesize a sterol molecule. The remaining eight genes encode enzymes which metabolize the first sterol, lanosterol, to ultimately form ergosterol. The two earliest genes,ERG11 (lanosterol demethylase) andERG24 (C-14 reductase), have been cloned and found to be essential for aerobic growth but are suppressed by mutations in the C-5 desaturase (ERG3) gene andfen1 andfen2 mutations, respectively. The remaining cloned genes,ERG6 (C-24 methylase),ERG2 (D8Æ7 isomerase),ERG3 (C-5 desaturase), andERG4 (C-24(28) reductase), have been found to be nonessential. The remaining genes not yet cloned are the C-4 demethylase and the C-22 desaturase (ERG5).

Abbreviations

PCR

polymerase chain reaction

SBI

sterol biosynthesis inhibitor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldstein, J.L., and Brown, M.S. (1990)Nature 243, 425–430.CrossRefGoogle Scholar
  2. 2.
    Lees, N.D., Bard, M., Kemple, M.D., Haak, R.A., and Woods, R.A. (1979)Biochim. Biophys. Acta 553, 469–475.PubMedCrossRefGoogle Scholar
  3. 3.
    Lees, N.D., Kleinhans, F.W., Broughton, M.C., Pennington, P.A., Picker, V.A., and Bard, M. (1989)Steroids 53, 567–578.PubMedCrossRefGoogle Scholar
  4. 4.
    Bard, M., Lees, N.D., Burrows, L.S., and Kleinhans, F.W. (1978)J. Bacteriol. 135, 1146–1148.PubMedGoogle Scholar
  5. 5.
    Kleinhans, F.W., Lees, N.D., Bard, M., Haak, R.A., and Woods, R.A. (1979)Chem. Phys. Lipids 23, 143–154.PubMedCrossRefGoogle Scholar
  6. 6.
    Rottem, S., Yaskoav, J., Neeman, Z., and Razin, S. (1973)Biochim. Biophys. Acta 323, 495–508.PubMedCrossRefGoogle Scholar
  7. 7.
    Lees, N.D., Lofton, S.L., Woods, R.A., and Bard, M. (1980)J. Gen. Microbiol. 118, 209–214.Google Scholar
  8. 8.
    Dahl, C., Biemann, H.P., and Dahl, J. (1987)Proc. Natl. Acad. Sci. USA 84, 4012–4016.PubMedCrossRefGoogle Scholar
  9. 9.
    Quesney-Huneeus, V., Wiley, M.H., and Siperstein, M.D. (1979)Proc. Natl. Acad. Sci. USA 76, 5056–5060.PubMedCrossRefGoogle Scholar
  10. 10.
    Quesney-Huneeus, V., Galick, H.A., Siperstein, M.D., Erikson, S.K., Spencer, J.A., and Nelson, J.A. (1983)J. Biol. Chem. 258, 378–385.PubMedGoogle Scholar
  11. 11.
    Georgopapadakou, N.H., and Walsh, T.J. (1994)Science 264, 371–373.PubMedCrossRefGoogle Scholar
  12. 12.
    Travis, J. (1994)Science 264, 360–362.PubMedCrossRefGoogle Scholar
  13. 13.
    Davies, J. (1994)Science 264, 375–382.PubMedCrossRefGoogle Scholar
  14. 14.
    Klein, R.S., Harris, C.A., Small, C.B., Moll, B., Lesser, M., and Friedland, G.H. (1994)New Engl. J. Med. 311, 554–556.Google Scholar
  15. 15.
    Beyer, J., Schwartz, S., Heinemann, V., and Siegert, W. (1994)Antimicrob. Agents Chemother. 38, 911–917.PubMedGoogle Scholar
  16. 16.
    Jolidon, S., Polack, A.M., Guerry, P., and Hartman, P.G. (1989)Biochem. Soc. Trans. 18, 47–49.Google Scholar
  17. 17.
    Marcireau, C., Guilloton, M., and Karst, F. (1990)Antimicrob. Agents Chemother. 34, 989–993.PubMedGoogle Scholar
  18. 18.
    Hartman, G., and Polak, A. (1993)Clin. Dermatol. 7, 27–36.Google Scholar
  19. 19.
    Vanden Bossche, H., Willemsens, G., Cools, W., Cornelissen, F., Lauwers, W.F., and Van Cutsem, J. (1980)Antimicrob. Agents Chemother. 17, 922–928.PubMedGoogle Scholar
  20. 20.
    Lees, N.D., Broughton, M.C., Sanglard, P., and Bard, M. (1990)Antimicrob. Agents Chemother. 34, 831–836.PubMedGoogle Scholar
  21. 21.
    Kerridge, D. (1975)Postgrad. Med. J. 55, 653–656.CrossRefGoogle Scholar
  22. 22.
    McCasker, J.H., Clemons, K.V., Stevens, D.A., and Davis, R.W. (1994)Genetics 136, 1261–1269.Google Scholar
  23. 23.
    Fegueur, M., Richard, L., Charles, N.D., and Karst, F. (1991)Curr. Genet. 20, 365–372.PubMedCrossRefGoogle Scholar
  24. 24.
    Jennings, S.M., Tsay, Y.H., Fisch, T.M., and Robinson, G.W. (1991)Proc. Natl. Acad. Sci. USA 88, 6038–6042.PubMedCrossRefGoogle Scholar
  25. 25.
    Robinson, G.W., Tsay, Y.H., Kienzle, B.K., Smith-Monroy, C.A., and Bishop, R.W. (1993)Mol. Cell Biol. 13, 2706–2717.PubMedGoogle Scholar
  26. 26.
    Jandrositz, A., Turnowsky, F., and Hogenauer, G. (1991)Gene 107, 155–160.PubMedCrossRefGoogle Scholar
  27. 27.
    Kelly, R., Miller, S.M., Lai, M.H., and Kirsch, D.R. (1990)Gene 87, 177–183.PubMedCrossRefGoogle Scholar
  28. 28.
    Covey, E.J., Matsuda, S.P.T., and Bartel, B. (1994)Proc. Natl. Acad. Sci. USA 91, 2211–2215.CrossRefGoogle Scholar
  29. 29.
    Covey, E.S., Matsuda, S.P.T., and Bartel, B. (1993)Proc. Natl. Acad. Sci. USA 90, 11628–11632.CrossRefGoogle Scholar
  30. 30.
    Trocha, P.J., Jasne, S.J., and Sprinson, D.B. (1977)Biochemistry 16, 4721–4726.PubMedCrossRefGoogle Scholar
  31. 31.
    Taylor, F.R., Rodriquez, F.J., and Parks, L.W. (1983)J. Bacteriol. 156, 64–68.Google Scholar
  32. 32.
    Kalb, V.F., Loper, J.C., Dey, C.R., Woods, C.W., and Sutter, T.R. (1986)Gene 45, 237–245.PubMedCrossRefGoogle Scholar
  33. 33.
    Kalb, V.F., Woods, C.W., Turi, T.G., Dey, C.R., Sutter, T.R., and Loper, J.C. (1987)DNA 6, 529–537.PubMedGoogle Scholar
  34. 34.
    Bard, M., Lees, N.D., Turi, T., Craft, D., Cofrin, L., Barbuch, R., Koegel, C., and Loper, J.C. (1993)Lipids 28, 963–967.PubMedGoogle Scholar
  35. 35.
    Watson, P.F., Rose, M.E., Ellis, S.W., England, H., and Kelly, S.L. (1989)Biochem. Biophys. Res. Commun. 164, 1170–1175.PubMedCrossRefGoogle Scholar
  36. 36.
    Shimokawa, O., Kato, Y., and Nakayama, H. (1986)J. Med. Vet. Mycol. 24, 327–336.PubMedGoogle Scholar
  37. 37.
    Shimokawa, O., Kato, Y., Kawano, K., and Nakayama, H. (1989)Biochim. Biophys. Acta 1003, 15–19.PubMedGoogle Scholar
  38. 38.
    Marcireau, C., Guyonnet, D., and Karst, F. (1992)Curr. Genet. 22, 267–272.PubMedCrossRefGoogle Scholar
  39. 39.
    Lorenz, R.T., and Parks, L.W. (1992)DNA Cell Biol. 11, 685–692.PubMedCrossRefGoogle Scholar
  40. 40.
    Lai, M.H., Bard, M., Pierson, C.A., Alexander, J.F., Goebl, M., Carter, G.T., and Kirsch, D.R. (1994)Gene 140, 41–49.PubMedCrossRefGoogle Scholar
  41. 41.
    Shimanuki, M., Goebl, M., Yanagida, M., and Toda, T. (1992)Mol. Biol. Cell 3, 263–273.PubMedGoogle Scholar
  42. 42.
    Chen, W., Capieaux, E., Balzi, E., and Goffeau, A. (1991)Yeast 7, 305–308.PubMedCrossRefGoogle Scholar
  43. 43.
    Pinto, W.J., and Nes, W.R. (1983)J. Biol. Chem. 258, 4472–4476.PubMedGoogle Scholar
  44. 44.
    Pinto, W.J., Lozano, R., Sekula, B.C., and Nes, W.R. (1983)Biochem. Biophys. Res. Commun. 112, 47–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Gaber, R.F., Copple, D.M., Kennedy, B.K., Vidal, M., and Bard, M. (1989)Mol. Cell Biol. 9, 3447–3456.PubMedGoogle Scholar
  46. 46.
    Hardwick, K.C., and Pelham, H.R.B. (1994)Yeast 10, 265–269.PubMedCrossRefGoogle Scholar
  47. 47.
    Baloch, R.I., Mercer, E.I., Wiggins, T.E., and Baldwin, B.C. (1984)Phytochemistry 23, 2219–2226.CrossRefGoogle Scholar
  48. 48.
    Ashman, W.H., Barbuch, R.J., Ulbright, C.E., Jarrett, H.W., and Bard, M. (1991)Lipids 26, 628–632.PubMedGoogle Scholar
  49. 49.
    Arthington, B.A., Hoskins, J., Skatrud, P.L., and Bard, M. (1991)Gene 107, 173–174.PubMedCrossRefGoogle Scholar
  50. 50.
    Rodriguez, R.J., Low, C., Bottema, C.D.K., and Parks, L.W. (1985)Biochim. Biophys. Acta 387, 336–343.Google Scholar
  51. 51.
    Rodriguez, R.J., and Parks, L.W. (1983)Arch. Biochem. Biophys. 225, 861–871.PubMedCrossRefGoogle Scholar
  52. 52.
    Lorenz, R.T., Casey, W.M., and Parks, L.W. (1989)J. Bacteriol. 171, 6169–6173.PubMedGoogle Scholar
  53. 53.
    Arthington, B.A., Bennett, L.G., Skatrud, P.L., Guyra, C.J., Barbuch, R.J., Ulbright, C.E., and Bard, M. (1991)Gene 102, 39–44.PubMedCrossRefGoogle Scholar
  54. 54.
    Worman, H.J., Evans, C.D., and Blobel, G. (1990)J. Cell Biol. 111, 1535–1542.PubMedCrossRefGoogle Scholar
  55. 55.
    Fukishima, H., Grimstead, G.F., and Gaylor, J.F. (1981)J. Biol. Chem. 256, 4822–4826.Google Scholar
  56. 56.
    Faust, J.R., Trzaskos, J.M., and Gaylor, J.F. (1988) inBiology of Cholesterol (Yeagle, P.L., ed.), CRC Press, Boca Raton.Google Scholar
  57. 57.
    Paltauf, F., Kohlwein, S.D., and Henry, S.A. (1992) inThe Molecular and Cellular Biology of the Yeast Saccharomyces (Jones, E.W., Pringle, J.R., and Broach, J.R., eds.) Vol. 2, Cold Spring Harbor Laboratory Press, New York.Google Scholar

Copyright information

© American Oil Chemists’ Society 1995

Authors and Affiliations

  • N. D. Lees
    • 1
  • B. Skaggs
    • 1
  • D. R. Kirsch
    • 2
  • M. Bard
    • 1
  1. 1.Department of BiologyIndiana University-Purdue University at IndianapolisIndianapolis
  2. 2.Agricultural Research DivisionAmerican CyanamidPrinceton

Personalised recommendations