, Volume 28, Issue 10, pp 877–882 | Cite as

pH-dissociation characteristics of cardiolipin and its 2′-deoxy analogue

  • Morris Kates
  • Jing-Yi Syz
  • David Gosser
  • Thomas H. Haines


Cardiolipin (CL) is found in inner mitochondrial membranes and the plasma membrane of aerobic prokaryotes. CL is tightly bound to those transmembrane enzymes associated with oxidative phosphorylation. CL has earlier been reported to have a single pK at low pH. We have titrated CL in aqueous suspension (bilayers) and in solution in methanol/water (1∶1, vol/vol) and found it to display two different pK values, pK1 at 2.8 and pK2 initially at 7.5 but shifting upwards to 9.5 as the titration proceeds. The unusually high pK2 might be explained by the formation of a unique hydrogen bond in which the free hydroxyl on the central glycerol forms a cyclic intramolecular hydrogen-bonded structure with one protonated phosphate (P-OH group). We have therefore chemically synthesized the 2′-deoxycardiolipin analogue, which lacks the central free hydroxyl group, and measured its pH-dissociation behavior by potentiometric titration, under the same conditions as those for CL. The absence of the hydroxyl group changes the titration dramatically so that the deoxy analogue displays two closely spaced low pK values (pK1=1.8; pK2=4.0). The anomalous titration behavior of the second dissociation constant of CL may be attributed to the participation of the central glycerol OH group in stabilizing the formation of a cyclic hydrogen-bonded monoprotonated form of CL, which may function as a reservoir of protons at relatively high pH. This function may have an important bearing on proton pumping in biological membranes.



beef heart


cardiolipin (diphosphatidylglycerol)


cardiolipin from beef heart

18∶0-CL (H2-CL-BH)

hydrogenated beef heart cardiolipin


hydrogenated cardiolipin fromE. coli

cy-17∶0 andcy-19∶0

9,10-methylenehexadecanoic and octadecanoic acid, respectively




2′-deoxycardiolipin (diphosphatidyl-1,3-propanediol)


synthetic deoxycardiolipin with palmitoyl (16∶0) as acyl groups




dipalmitoyl phosphatidic acid


fast-atom bombardment mass spectrometry


Fourier transform infrared spectroscopy


gas-liquid chromatography


nuclear magnetic resonance


phosphatidic acid






thin-layer chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wasserman, A., Neisser, A., and Bruck, C. (1906)Dt. Med. Wschr. 32, 745–746.Google Scholar
  2. 2.
    Browning, C.H., Cruickshank, T., and Gilmour, W. (1911)J. Path. Bact. 15, 361–362.CrossRefGoogle Scholar
  3. 3.
    Noguchi, H. (1911)Z. Immunitäsforsch. Exp. Therap. 9, 715–720.Google Scholar
  4. 4.
    Pangborn, M. (1942)J. Biol. Chem. 143, 247–256.Google Scholar
  5. 5.
    Pangborn, M. (1947)J. Biol. Chem. 168, 351–361.PubMedGoogle Scholar
  6. 6.
    Faure, M., and Maréchal, J. (1962)Compt. Rend. Acad. Sc. Paris 256, 4518–4520.Google Scholar
  7. 7.
    Gray, G.M., and MacFarlane, M.G. (1958)Biochem. J. 70, 409–425.PubMedGoogle Scholar
  8. 8.
    Benson, A.A., and Strickland, E.H. (1960)Biochim. Biophys. Acta 41, 328–333.PubMedCrossRefGoogle Scholar
  9. 9.
    Le Cocq, J., and Ballou, C.E. (1964)Biochemistry 3, 976–980.CrossRefGoogle Scholar
  10. 10.
    de Haas, G.H., Bonsen, P.P.M., and van Deenen, L.L.M. (1966)Biochim. Biophys. Acta 116, 114–124.PubMedGoogle Scholar
  11. 11.
    Few, A.V., Gilby, A.R., and Seaman, G.V.F. (1960)Biochim. Biophys. Acta 38, 130–136.PubMedCrossRefGoogle Scholar
  12. 12.
    Coulon-Morelec, M.J., Faure, M., and Maréchal, J. (1962)Bull. Soc. Chim. Biol. 44, 171–183.PubMedGoogle Scholar
  13. 13.
    Seddon, J.M., Kaye, R.D., and Marsh, D. (1983)Biochim. Biophys. Acta 734, 347–352.CrossRefGoogle Scholar
  14. 14.
    Cable, M.B., Jacobus, J., and Powell, G.L. (1978)Proc. Natl. Acad. Sci. USA 75, 1227–1231.PubMedCrossRefGoogle Scholar
  15. 15.
    Powell, G.L., and Jacobus, J. (1974)Biochemistry 13, 4024–4026.PubMedCrossRefGoogle Scholar
  16. 16.
    Marsh, D. (1990)Handbook of Lipid Bilayers, p. 85, CRC Press, Boca Raton.Google Scholar
  17. 17.
    Luzatti, V., and Chapman, D. (1968)Biological Membranes, Academic Press, New York.Google Scholar
  18. 18.
    Batenburg, A.M., Hibbeln, J.C.L., Vekleij, A.J., and de Kruijff, B. (1987)Biochim. Biophys. Acta 903, 155–165.PubMedCrossRefGoogle Scholar
  19. 19.
    Rose, H.G. (1964)Biochim. Biophys. Acta, 84, 109–113.PubMedGoogle Scholar
  20. 20.
    Courtade, S., Marinetti, G.V., and Stotz, E. (1967)Biochim. Biophys. Acta 137, 121–134.PubMedGoogle Scholar
  21. 21.
    Hübner, W., Mantsch, H., and Kates, M. (1991)Biochim. Biophys. Acta 1066, 166–174.PubMedCrossRefGoogle Scholar
  22. 22.
    Daum, G. (1985)Biochim. Biophys. Acta 822, 1–42.PubMedGoogle Scholar
  23. 23.
    Robinson, N.C., Zborowski, J., and Talbert, L.H. (1990)Biochemistry 29, 8962–8969.PubMedCrossRefGoogle Scholar
  24. 24.
    Eble, K.S., Coleman, W.B., Hantgan, R.R., and Cunningham, C.C. (1990)J. Biol. Chem. 265, 19434–19440.PubMedGoogle Scholar
  25. 25.
    Horvath, L.I., Drees, M., Klingenberg, M., and Marsh, D. (1990)Biochemistry 29, 10664–10669.PubMedCrossRefGoogle Scholar
  26. 26.
    Dale, M.P., and Robinson, N.C. (1988)Biochemistry 27, 8270–8275.PubMedCrossRefGoogle Scholar
  27. 27.
    Kagawa, Y., Kandrach, A., and Racker, E. (1973)J. Biol. Chem. 248, 676–684.PubMedGoogle Scholar
  28. 28.
    Serrano, R., Kanner, B.J., and Racker, E. (1976)J. Biol. Chem. 251, 2453–2461.PubMedGoogle Scholar
  29. 29.
    Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.PubMedGoogle Scholar
  30. 30.
    Kates, M. (1986)Techniques of Lipidology, 2nd edn, pp. 110–111, Elsevier, Amsterdam.Google Scholar
  31. 31.
    Harris, D.C. (1987)Quantitative Chemical Analysis, 2nd edn., W.H. Freeman and Co., New York.Google Scholar
  32. 32.
    Kates, M., Palameta, B., and Chan, T.H. (1966)Can. J. Biochem. 44, 707–712.PubMedCrossRefGoogle Scholar
  33. 33.
    Cutler, Jr., F.A., Coubere, J.P., Lukes, R.M., Fisher, J.F., Mertel, H.E., Herschman, J., Chemerda, J.M., Sarett, L.M., and Pfister, K., III (1958)J. Am. Chem. Soc. 80, 6303–6320.CrossRefGoogle Scholar
  34. 34.
    Ali, S., and Bittman, R. (1989)Chem. Phys. Lipids 50, 11–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Tanford, C., and Kirkwood, J.G. (1957)J. Am. Chem. Soc. 79, 5333–5339.CrossRefGoogle Scholar
  36. 36.
    Haines, T.H. (1983)Proc. Natl. Acad. Sci. USA 80, 160–164.PubMedCrossRefGoogle Scholar
  37. 37.
    Stewart, L.C., Kates, M., and Smith, I.C.P. (1988)Chem. Phys. Lipids 48, 177–188.PubMedCrossRefGoogle Scholar
  38. 38.
    Stewart, L.C., Kates, M., Yang, P.W., and Mantsch, H.H. (1990)Biochem. Cell Biol., 68, 266–273.CrossRefGoogle Scholar
  39. 39.
    Kates, M., Moldoveanu, N., and Stewart, L.C. (1993)Biochim. Biophys. Acta 1169, 46–53.PubMedGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1993

Authors and Affiliations

  • Morris Kates
    • 1
  • Jing-Yi Syz
    • 2
  • David Gosser
    • 2
  • Thomas H. Haines
    • 2
  1. 1.Department of BiochemistryUniversity of OttawaOttawaCanada
  2. 2.Department of ChemistryCity College of the City University of New YorkNew York

Personalised recommendations