, 40:131 | Cite as

Strengths abd weaknesses of the reef guild concepts and quantitative data: Application to the upper Capitan-massive community (Permian), Guadalupe Mountains, New Mexico-Texas

  • John A. Fagerstrom
  • Oliver Weidlich


Analyses of large acatate sheet tracings, close-up photos and 105 sub-horizontal quadrat surfaces at four localities near the base of the Guadalupe Mountains Escarpment indicate that the biotic framework of the upper Capitan reef was built by about 35 species: one codiacean (Eugonophyllum sp.), 17 calcisponges, 9 bryozoans, one richthofenid brachipod, some crinoid (known only from columns), 4 Problematica and microbes. This widespread fossil community included members of the Constructor, Baffler and Binder Guilds. A re-evaluation of the Guild Concept (Fagerstrom, 1987, 1991) highlights the validity of the functional roles of the Constructor and Binder Guilds for reef construction. Members of the Baffler Guild, however, need to be revised and an interpretation of microbial micrite and cryptic biota remains controversial. Open surface phylloid algal and cryptic sponge-bryozoan dominated sub-communities were of only local importance. The upper Capitanmassive differs from its Permian conterparts in the low diversity and areal cover of the frame-building biota, low micrite content and abundant micro-frameworks, i.e, intergrown small sponges, Problematica and syndepositional cements (botryoidal and isopachous, fibrous calcite).

Quantitative areal cover data were assessed at various scales. Large acetate sheets generally have low coverage of macro-biota (5.4%). By contrast, analysis of small areas of local high areal cover (selected acetate sheet quadrats, subvertical photographs, and quadrat samples: 15–21%) provide detailed insights into clustered patches forming the inital reef framework. Both data sets provide useful clues for an integrated approach to framework assessment. Mean acetate sheet data are limited by their somewhat generalized pattern, while small investigation areas may overemphasize local variation.

Erect and pendant sponges with solitary, sub-cylindrical and multi-branche/clonal forms, were the predominant initial frame-builders in both open surface and cryptic habitats. Selective larval recruitment of erects sponges to firm substrates produced continous upward accretion of the initial framework. On open surfaces and in pores formed by tabular sponges and fenestrate bryozoans, erect and pendant sponges were supported in their hydrodynamically unstable growth position by encrusters, chieflyArchaeolithoporelle hidensis, Shamovella obscura, an unnamed tubular organism, and microbes. Subsequent growth ofArchaeolithoporella hidensis, microbial crusts and syndepositional cements on the outer walls of live sponges would have impeded ambient water circulation and may have led to ‘creeping sponge death by suffocation’ or complete encrustation after death. Filling of pores in the initial and encrusted reef framework by internal sediment (packstone-grainstone; derived from the framework and the back-reef shelf/platform) and voluminous syndepositional marine-phreatic cements completed the framebuilding process.


Upper Capitan-Massive Metazoans Problematica Guild Controversy Quantitative Data Texas/New Mexico Middle/Late Permian 


  1. Achauer, C. W. (1969): Origin of Capitan Formation, Guadalupe Mountains, New Mexico and Texas.—Bulletin of the American Association of Petroleum Geologists,53, 2314–2325, BoulderGoogle Scholar
  2. Babcock, J. A. (1977): Calcareous algae, organic boundstones, and the genesis of the upper Capitan Limestones (Permian, Guadalupian), Guadalupe Mountains, west Texas and New Mexico.—In:Hileman, M. E. & Mazzullo, S. J. (eds.): Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas.—Society of Economic Paleontologists and Mineralogists, Permian Basin Section, Special Publication77/6, 3–44, TulsaGoogle Scholar
  3. — (1979): Calcareous algae and algal Problematica of the Capitan reef (Permian), Guadalupe Mountains, west Texas and New Mexico, U.S.A.—Bulletin Centre de Recherche Exploration-Production Elf-Aquitaine,3, 419–428, PauGoogle Scholar
  4. — (1986): The puzzle of alga-like Problematica, or rummaging around in the algal wastebasket.—In:Hoffman, A. &Nitecki, M. H. (eds.), Problematic fossil taxa. 12–26, Oxford University Press, New York.Google Scholar
  5. Babcock, J. A., Pray, L. & Yurewicz, D. (1977): Locality guide I, Stop I, Upper Capitan-Massive, mouth of Walnut Canyon.—In:Pray, L. C. & Esterban, M. (eds.): Road logs and locality guides, v. 2., Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas.—Society of Economic Paleontologists and Mineralogists, Permian Basin Section, Special Publication77/16, G-17-G,-40, TulsaGoogle Scholar
  6. Bernecker, M. (1995): Rekonstruction einer Karbonatplattform in der Obertrias: Paläontologie, Microfazies und Biostragigraphie von Plattform- und Riffkalken in den Oman Bergen.—Unpublished Ph. D. thesis, University of Erlangen-Nürnberg, 167 p., ErlangenGoogle Scholar
  7. Bernecker, M. &Weidlich, O. (1994): Attempted reconstruction of Permian and Triassic skeletonization from reef-builders (Oman, Turkey): quantitative assessment with digital image analysis.—Abhandlungen der Geologischen Bundesanstalt,60, 31–56, WienGoogle Scholar
  8. Bernecker, M., Weidlich, O. & Flügel, E. (in press 1999): Response of coral growth to sea-level changes, storm events, and sediment supply: Clues from spectacular Late Triassic Adnet reef, Northern Calcareous Alps, Austria.—Facies,40 or41, ErlangenGoogle Scholar
  9. Brachert, T., Buggisch, C. W., Flügel, E., Hüssner, H. M., Joachimski M. M., Tourneur, F. &Walliser, O. H. (1992): Controls on the mud mound formation: the Early Devonian Kess-Kess carbonates of the Hamar Laghdad, Antiatlas, Morocco. —Geologischen Rundschau,81, 15–44, StuttgartCrossRefGoogle Scholar
  10. Burne, R. V. &Moore, L. S. (1987): Microbialites: organosedimentary deposits of benthic microbial communities— Palaios2, 241–254, TulsaGoogle Scholar
  11. Cooper, G. A., &Grant, R. E. (1975): Permian brachiopods of west Texas III.—Smithsonian Contributions to Paleobiology,11, 927–1298, WashingtonGoogle Scholar
  12. Embry, A. F. &Klovan, J. E. (1971): A Late Devonian reef tract on northeastern Banks Island, N.W.T.—Bull. Canad. Petrol. Geol.,19, 730–781, CalgaryGoogle Scholar
  13. Embry, A. F. &Klovan, J. E. (1972): Absolute water depth limits of Late Devonian paleoecological zones.—Geologische Rundschau,16, 672–686, StuttgartCrossRefGoogle Scholar
  14. Fagerstrom, J. A. (1985): Comparison of processes and guild structures in Holocene and ancient reef communities.—Proceedings of the Fifth International Reef Congress,2, 126, TahitiGoogle Scholar
  15. — (1987): The evolutions of reef communities.—600 p., New York (Wiley)Google Scholar
  16. — (1988): A structural model for reef communities.—Palaois,3, 217–220, TulsaGoogle Scholar
  17. — (1991): Reef-building guilds and a checklist for determining guild membership.—Coral Reefs,10, 47–52, HeidelbergCrossRefGoogle Scholar
  18. — (1994): The history of Devonian-Carboniferous reef communnities: extinctions, effects, recovery.—Facies30, 177–192, ErlangenGoogle Scholar
  19. — (1996): Paleozoic brachiopod symbioses: Testing the limits of modern analogs in paleoecology.—Bulletin of the Geological Society of America,108, 1393–1403, BoulderCrossRefGoogle Scholar
  20. Fagerstrom, J. A. & Weidlich, O. (1999): Origin of the upper Capitan-Massive (Permian), Guadalupe Mountains, New Mexico-Texas: Is it a reef?—Bulletin of the Geological Society of America, Boulder.Google Scholar
  21. Flügel, E. (1994): Pangean shelf carbonates: controls and paleoclimatic significance of Permian and Triassic reefs.—In:Klein, G. D. (ed.): Pangea: Paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a suppercontinent.— Geological Society of America, Special Paper288, p. 247–266, BoulderGoogle Scholar
  22. Flügel, E., Di Stefano, P. &Senowabari-Daryan, B. (1991): Microfacies and depositional structure of allochthonous carbonate base-of-slope deposits: The Late Permian Pietra di Salomone Megablock, Sosio Valley (Western Sicily).—Facies,25, 147–186, ErlangenGoogle Scholar
  23. Flügel, E. &Flügel-Kahler, E. (1992): Phanerozoic reef evolution: Basic questions and data base.—Facies26, 167–278, ErlangenGoogle Scholar
  24. Flügel, E., Hillmer, G. &Scholz, J. (1993): Microbial carbonates and reefs: an introduction.—Facies,29, 1–2, ErlangenGoogle Scholar
  25. Flügel, E., Kiessling, W. & Golonka, J. (1996): Pharnerozoic reef patterns: Data survey, distribution maps and intepreation U.S.A.—In:Reitner, R., Neuweiler, F. & Gunkel, F. (eds.): Global and regional controls on biogenic sedimentation.— Göttinger Arbeiten zur Geologie und Paläontologie,Sb 2, 391–396, GöttingenGoogle Scholar
  26. Flügel, E., Kochansky-Devidé, V., &Ramovs, A. (1984): A Middle Permian calcisponge/algals/cement reef: Straza near Bled, Slovenia.—Facies,10, 179–256, ErlangenGoogle Scholar
  27. Flügel, E. (1980):Permosoma Jaekel 1918, Ein Problematicum aus dem Pern Siziliens.—Palaontographica Abteilung A, 167, 1–9, StuttgartGoogle Scholar
  28. Garber, R. A., Grover, G. A. & Harris P. M. (1989): Geology of the Capitan shelf margin—Subsurface data from the northern Delaware Basin.—In:Harris, P. M. & Grover, G. A. (eds.): Subsurface and outcrop examination of the Capitan shelf margin, northern Delaware Basin.—Society of Economic Paleontologists and Mineralogists Core Workshop13, 3–269, TulsaGoogle Scholar
  29. Ginsburg, R. N. &Schroeder, J. H. (1973): Growth and submarine fossilization of algal cup reefs, Bermuda.—Sedimentology,20, 575–614, OxfordCrossRefGoogle Scholar
  30. Girty, G. H. (1908): The Guadalupian fauna.—United States Geological Survey Professional Paper,58, WashingtonGoogle Scholar
  31. Glenister, B. F., Boyd, D. W., Furnish, W. M., Grant, R. E., Harris, M. T., Kozur, H., Lambert, L. L., Nassichuck, W. W., Newell, N. D., Pray, L. C., Spinosa C., Wardlaw, B. R., Wilde, G. L. &Yancey, T. E. (1992): The Guadalupian: proposed international standard for a Middle Permian Series. —International Geology Review,34, 857–888, Falls ChurchCrossRefGoogle Scholar
  32. Grammer, M. R., Ginsburg, R. N., Swart, P. K., McNeill, D. F., Jullan, D. A. J. & Prezbindowski, D. R. (1993): Rapid growth rates of synsedimentary marine aragnotie cements in steep marginal slope deposits, Bahamas and Belize.—Journal of Sedimentary Petrology,63, 983–989, LawrenceGoogle Scholar
  33. Grötsch, J., Koch, R. &Buser, S. (1994): Fazies, Gildenstruktur und Diagenese des nördlichen Randes der Dinarischen Karbonatplattform (Barreme-Apt, W-Slowenien).—Abhandlungen der Geologischen Bundesanstalt,50, 125–153, WienGoogle Scholar
  34. Grotzinger, J. P. &Knoll, A. H. (1995): Anomalous carbonate precipitates: Is the Precambrian the key to the Permian?.— Palaios,10, 587–596, LawrenceGoogle Scholar
  35. Höfling R. (1997): Eine erweiterte Riff-Typologie und ihre Anwendung auf kretazischen Biokonstruktionen.—Bayerische Akadernie der Wissenschaften, Mathematisch-Naturwissenschaftiliche Klasse Abhandlungen, Neue Folge, 169, 127 p., MünchenGoogle Scholar
  36. Insalaco, E. (1998): The descriptive nomenclatures and classification of growth fabrics in fossil scleratinian reefs.—Sedimentary Geology,118, 159–186, AmsterdamCrossRefGoogle Scholar
  37. James, N. P. & Choquette, P. W. (1990): Limestone—the seafloor diagenetic environment.—In:McIlreath, R. J. & Morrow, D. W. (eds): Diagenesis.—Geoscience Canada reprint series4, 13–30, OttawaGoogle Scholar
  38. James, N. P. & Ginsburg, R. N. (1979): The seaward margin of Belize barriers reef and atoll reefs—International Association of Sedimentologists, Special Publications3, 191p., OxfordGoogle Scholar
  39. Kirland, B. L. (1994): Distribution of dasyladacean algae in the Permian Capitan Formation and Carlsbad Group, Guadalupe Mountains, Texas and New Mexico, U.S.A..—Beiträge zur Paläontologie19, 153–159, WienGoogle Scholar
  40. Kirkland, B. L. &Chapman, R. L. (1990): The fossil green algaMizzia (Dasycladaceae): a tool for interpretation of paleoenvironmnet in the Upper Permian Capitan reef complex, southeastern New Mexico.—Journal of Phycology,26, 569–576, New York.CrossRefGoogle Scholar
  41. Kirkland, B. L., Moore, C. H. &Dickson, J. A. D. (1991): Aragonitic Pennsylvanian phylloid algae from New Mexico: the missing link.—Bulletin of the American Association of petroleum Geologists75, 610, TulsaGoogle Scholar
  42. Kissling, D. L. &Lineback, J. A. (1967): Paleoecological analysis of corals and stromatoporoids in a Devonian biostrone, Falls of the Ohio, Kentucky-Indiana.—Bulletin of the Geological Society of America,78, 157–174, BoulderGoogle Scholar
  43. Klement, K. W. (1968): Studies on the ecological distribution of lime-secreting and sediment-trapping algae in reefs and associated environments.—InSilver, B. A. (ed.): Symposium and guidebook.—Society of Economic Paleontologists and Mineralogists, Permian Basin Section, 36–48, TulsaGoogle Scholar
  44. Kobluk, D. R. (1988): Cryptic faunas in reefs: ecology and geologic importance.—Palaios,3, 379–390, Ann ArborGoogle Scholar
  45. Konishi, K. &Wray, J. L. (1961).Eugonophyllum, a new Pennsylvanian and Permian algal genus—Journal of Paleontology,35, 659–667, LawrenceGoogle Scholar
  46. Krainer, K. (1995):Anthracoporella mounds in the Late Carboniferous Auernig Group, Carnic Alps (Austria).—Facies,32, 38–41, ErlangenGoogle Scholar
  47. Leinfelder, R., Nose, M., Schmid, D. U. &Werner, W. (1993): Microbial Crusts of the Late Jurassic: Composition, palaeo-ecological significance and importance in reef construction.— Facies,29, 195–230, ErlangenGoogle Scholar
  48. Lloyd, E. R. (1929): Capitan Limestone and associated formations of New Mexico and Texas.—Bulletin of the American Association of Petroleum Geologists,13, 645–658, TulsaGoogle Scholar
  49. Mazzullo, S. J. (1995): Permian stratigraphy and facies, Permian Basin (Texas-New Mexico) and adjoining areas in the midcontinent United States.—In:Scholle, P. A., Peryt, T. M. &Ulmer-Scholle, D. J. (eds.): The Permian Northern Pangea. —v.2, 41–60, Berlin (Springer)Google Scholar
  50. Mazzullo, S. J. &Cys, J. M. (1978):Archaeolithoporella-boundstones and marine aragonite cements, Permian Capitan reef, New Mexico and Texas, USA.—Neues Jahrbuch für Geologie und Paläontologie, Monatshefte,1978/10, 600–611, StuttgartGoogle Scholar
  51. Mistien, B. (1994): Skeletal density: implications for development and extinction of Palaeozoic stromatoporoids.—Courier Forschungsinstitute Senckenberg,72, 319–327, FrankfurtGoogle Scholar
  52. Moussavian, E. (1992): On Cretaceous bioconstructions: Composition and Evolutionary trends of crust-building associations.— Facies,26, 117–144, ErlangenGoogle Scholar
  53. Nagai, K. (1985): Reef-forming algal chaetetid boundstone found in the Akiyoshi Limestone Group, southwest Japan.—Bulletin of the Akiyoshi-dai Museum of Natural History,20, 1–16Google Scholar
  54. Neuweiler, F. (1993): Development of Albian microbialites and microbialite reefs at marginal platform areas of the Vasco-Cantabrian Vasin (Soba reef area, Cantabria, N. Spain).— Facies,29, 231–250, ErlangenGoogle Scholar
  55. Newell, N. D. (1955): Depositional fabrics in Permian reef limestones. —Journal of Geology63, 301–309, BoulderCrossRefGoogle Scholar
  56. Newell, N. D., Rigby, J. K., Fischer, A. G., Whiteman, A. J., Hickox, J. E., &Bradley, J. S. (1953): The Permian reef complex of the Guadalupe Mountains region, Texas and New Mexico—A study in paleoecology.—236 p., San Francisco (Freeman)Google Scholar
  57. Noé, S. (1996): Late-stage reef evolution of the Permian reef complex: shelf margin and outer-shelf development of the Tansill Formation (Late Permian), northern Guadalupe Mountains, New Mexico, U.S.A.—In:Reitner, R., Neuweiler, F. & Gunkel, F. (eds.): Global and regional controls on biogenic sedimentation, Göttinger Arbeiten zur Geologie und Paläontologie,Sb 2, 317–324, GöttingenGoogle Scholar
  58. Pisera, A. &Zawidzka, K. (1981):Archaeolithoporella from the Upper Permian reef limestones of the northern Caucasus.— Bulletin de l’Academie Polonaise des sciences,29, 233–238, WarsawGoogle Scholar
  59. Pratt, B. P. (1995): The origin, biota and evolution of deep-water mud-mounds.—In:Monty, C. L. V., Bosence, D. W. J., Bridges, P.H. & Pratt, B.R. (eds.): Carbonate mud-mounds, their origin and evolution.—International Association of Sedimentologists, Special Publication23, 49–123. OxfordGoogle Scholar
  60. Precht, W. F. (1994): The use of the term guild in coral reef ecology and palecology: a critical evaluation.—Coral Reefs,13, 135–136, BerlinCrossRefGoogle Scholar
  61. Reinhold, C. (1995): Guild structure and aggradation pattern of MessinianPorites patch reefs: Ecological succession and external environmental control (San Miguel de Salinas Basin, SE Spain).—Sedimentary Geology,97, 157–175, AmsterdamCrossRefGoogle Scholar
  62. Reitner, J. (1993): Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) Formation and Concepts.—Facies,29, 3–40, ErlangenGoogle Scholar
  63. Riding, R. (1993):Shanovella obscura: the correct name forTubiphytes obscurus (Fossil). Taxon 42:71–73.CrossRefGoogle Scholar
  64. Riding, R. &Guo, L. (1992): Affinity ofTubiphytes.—Palaeontology35, 37–49, Oxford.Google Scholar
  65. Rigby, J. K. &Fan, J. (1988): An unusual sponge root tuft from the Middle Permian Maokou Formation, Guangxi Province, south China.—Journal of Paleontology62, 822–826, LawrenceGoogle Scholar
  66. Rigby, J. K. &Senowbari-Daryan, B. (1996):Gigantospongia, new genus, the largest known Permian sponge, Capitan Limestone, Guadalupe Mountains, New Mexico.—Journal of Paleontology70, 347–355, LawrenceGoogle Scholar
  67. Rigby, J. K., Senowbari-Daryan, B. &Liu, H. (1998): Sponges of the Upper Permian Capitan Limestone, Guadalupe Mountains, New Mexico and Texas.—Brigham Young University Geology Studies,42, 19–117, Provo.Google Scholar
  68. Root, R. B. (1967): The niche exploitation pattern of the blue-gray gnatcatcher.—Ecological Monographs,97, 317–350.CrossRefGoogle Scholar
  69. Ross, D. J. (1991): Botryoidal high-magnesium calcite marine cements from the Upper Cretaceous of the Mediterranean region.—Journal of Sedimentary Petrology,61, 349–353, LawrenceGoogle Scholar
  70. Samankassou, E. (1998): Skeletal framework mounds of dasycladalean algaAnthracoporella, Upper Paleozoic, Carnic Alps, Austria.—Palaios,13, 297–300, LawrenceGoogle Scholar
  71. Sano, H. &Kanmera, K. (1996): Microbial controls on Panthalassan Carboniferous-Permian oceanic buildups, Japan.—Facies,34, 239–256, ErlangenGoogle Scholar
  72. Schmidt, V. (1977): Inorganic and organic growth and subsequent diagenesis in the Permian Capitan Formation and its equivalent, Delaware Basin margin, west Texas and New Mexico.— In:Hileman, M. E. & Mazzullo, S. J. (eds): Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas.—Society of Economic Paleontologists and Mineralogists, Permian Basin Section, Special Publication77–6, 93–132, TulsaGoogle Scholar
  73. Schmidt, V. & Klement, K. W. (1971): Early diagenetic origin of reef framework in the Permian Capitan reef complex, Guadalupe Mountains, Texas and New Mexico.—International Sedimentological Congress, Program with Abstracts, p. 89, HeidelbergGoogle Scholar
  74. Schuhmacher, H. &Plewka, M. (1981): Mechanical resistance of reef-builders through time.—Oecologica49, 279–282, BerlinCrossRefGoogle Scholar
  75. Schroeder, J. H. (1972): Fabrics and sequences of submarine carbonate cements in Holocene Bermuda cup reefs.— Geologische Rundschau92, 708–730, StuttgartCrossRefGoogle Scholar
  76. Senowbari-Daryan, B. (1990): Die systematische Stellung der thalamiden Schwämme und ihre Bedeutung in der Erdgeschichte. —Münchner Geowissenschaftliche Abhandlungen21, 326 p., MünchenGoogle Scholar
  77. Senowbari-Daryan, B. &Flügel, E. (1993):Tubiphytes Maslov, an enigmatic fossil: Classification, fossil record and significance through time. Part I: Discussion of late Paleozoic material.—Bollettino della Societa Paleontologica Italiana, Special volume1, 353–382, ModenaGoogle Scholar
  78. Senowbari-daryan, B. &Rigby, J. K. (1996a): First report ofLercaritubus in North America, from the Permian Capitan Limestone, Guadalupe Mountains, New Mexico.—Journal of Paleontology,70, 22–26, LawrenceGoogle Scholar
  79. Senowbari-daryan, B. andRigby, J. K. (1996b): Brachiopod mounds not sponge reefs, Permian Capitan-Tansill Formations, Guadalupe Mountains, New Mexico.—Journal of Paleontology,70, 697–70, LawrenceGoogle Scholar
  80. Sheehan, P. M. (1988): The evolution of reef communities: a review.—Palaios, 3, 251–252, Ann ArborGoogle Scholar
  81. Toomey, D. F. & Babcock, J. A. (1983): Precambrian and Paleozoic algal carbonates, west Texas-southern New Mexico.— Colorado School of Mines Professonal Contributions11, 345p., Golden.Google Scholar
  82. Tucker, M. E. &Wright, V. P. (1990): Carbonate sedimentology. —482p., Oxford (Blackwell)Google Scholar
  83. Vacelet, J. andBoury-Esnault, N. (1996): A new species of carnivorous sponge (Demospongiae: Cladorhizidae) from a Mediterranean cave.—Bulletin Institut Royale Science Naturelle, Belgique (supplement),66, 109–115, BruxellesGoogle Scholar
  84. Vennin, E., Vachard, D. &Prous, J-N. (1997): Taphonomie et synecologie du “Genre”Tubiphytes dans les bioconstructions de Tratau et de Nizhni-Irginsk (Permien Inferieur) de l’Oural, Russie).—Geobios,30, 635–649, LyonCrossRefGoogle Scholar
  85. Wahlman, G. P. (1985): Lower Permian (Wolfcampian)Archaeolithoporella-Tubiphytes-sponge boundstones from the subsurface of west Texas.—InToomey, D. F. &Nitecki, M. H. (eds.): Paleoalgology.—208–314, Berlin (Springer)Google Scholar
  86. Wahlman, G. P. (1996): The Lower Permian (Wolfcampian) reef community in the Permian Basin: evolution, guild structure, and variations.—Geol. Soc. America, South Central Section, abstract with programs, AustinGoogle Scholar
  87. Webb, G. E. (1996): Was the Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbal carbonate and biologically induced cement)?—Sedimentology,43, 947–971, OxfordCrossRefGoogle Scholar
  88. Webb, G. E., Baker, J. C. &Jell, J. S. (1998): Inferred syngenetic textural evolution in Holocene cryptc reefal macrobalites, Heron Reef, Great Barrier Reef, Australia.—Geology, v.26, 355–358, BoulderCrossRefGoogle Scholar
  89. Weidlich, O., Bernecker, M. &Flügel, E. (1993): Combined quantitative analysis and microfacies studies of ancient reefs: An integrated approach to Upper Permian and Upper Triassic reef carbonates (Sultanate of Oman).—Facies,28, 115–144, ErlangenGoogle Scholar
  90. Weidlich, O. &Fagerstrom, J. A. (1998): Evolution of the Upper Capitan-Massive (Permian), Guadalupe Mountains, New Mexico.—Brigham Young University Geology Studies,42, 167–187, ProvoGoogle Scholar
  91. Weidlich, O. & Fagerstrom, J. A. (in press): Influence of sea-level changes on development, community structure, and quantitative composition of the upper Capitan-massive (Permian), Guadalupe Mountains, Texas & New Mexico.—Society of Economic Paleontologists and Mineralogists, Concepts in Sedimentology, TulsaGoogle Scholar
  92. Weidlich, O. &Flügel, H. W. (1995): Upper Permian (Murghabian) rugose corals from Oman (Ba’id area, Saih Hatet): Community structure and contributions to reef-building processes.—Facies33, 229–264, ErlangenGoogle Scholar
  93. Wood, R., Dickson, J. A. D. &Kirkland-George B. (1994): Turning the Capitan reef upside down: A new appraisal of the ecology of the Permian Capitan reef, Guadalupe Mountains, Texas and New Mexico.—Palaios,9, 422–427, LawrenceGoogle Scholar
  94. Wood, R., Dickson, J. A. D. &Kirkland-George, B. (1996): New observations on the ecology of the Permian Capitan reef, Texas and New Mexico.—Palaeontology,39, 733–762, OxfordGoogle Scholar
  95. Yurewicz, D. A. (1977): Origin of the massive facies of the lower and middle Capitan Limestone (Permian), Guadaulupe Mountians, New Mexico and west Texas.—In:Hileman, M. E. & Mazzullo, S. J. (eds.): Upper Guadalupian facies, Permian reef complex, Guadalupe Mountains, New Mexico and west Texas.—Society of Economic Paleontologists and Mineralogists, Permian Basin Section, Special Publication77–6, 45–92, TulsaGoogle Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1999

Authors and Affiliations

  • John A. Fagerstrom
    • 1
    • 2
  • Oliver Weidlich
    • 3
  1. 1.Department of GeosciencesOregon State UniversityCorvallisU.S.A.
  2. 2.Centre de Recherches et Observatioire de l’Environment-CRIOBE-EPHEURA CNRS 1453MooreaFrench Polynesia
  3. 3.Institut für Angewandte Geologie IITechnische Universität BerlinBerlin

Personalised recommendations