, Volume 33, Issue 1, pp 1–17 | Cite as

Modern marine stromatolites in the Exuma Cays, Bahamas: Uncommonly common

  • R. Pamela Reid
  • Ian G. Macintyre
  • Kathleen M. Browne
  • Robert S. Steneck
  • Timothy Miller


Modern stromatolites in open marine environments, unknown until recently, are common throughout the Exuma Cays, Bahamas. They occur in three distinct settings: subtidal tidal passes, subtidal sandy embayments and intertidal beaches. These stromatolites have a relief of up to 2.5 m and occur in water depths ranging from intertidal to 10 m. Surfaces near the sediment-water interface are typically colonized by cyanobacterial mats, whereas high relief surfaces are commonly colonized by algal turf and other macroalgae such asBatophora, Acetabularia, andSargassum. The internal structure of the stromatolites is characterized by millimeter-scale lamination defined by differential lithification of agglutinated sediment. In thin section, the lithified laminae appear as micritic horizons with distinct microstructures: they consist of thin micritic crusts (20–40 μm thick) overlying layers of micritized sediment grains (200–1000 μm thick); the micritized grains are cemented at point-contacts and are trucated along a surface of intense microboring. The Exuma stromatolites are built by cyanobacterial-dominated communities. These laminated prokaryotic structures grade to unlayered thrombolites built by eukaryotic algae. The variety of sites, settings and shapes of stromatolites in the Exuma Cays present excellent opportunities for future studies of stromatolite morphogenesis.


Stromatolite Thrombolite Bahamas Holocene or Recent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Awramik, S.M. (1992): The history and significance of stromatolites. —In:Schidlowski, M., Golubic, S., Kimberley M.M., McKirdy, D.M. &Trudinger, P.A. (eds.): Early Organic Evolution: Implications for Mineral and Energy Resources.—p. 435–449, Berlin (Springer)Google Scholar
  2. Awramik, S.M. &Riding, R. (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation.—Proceedings of National Academy of Science, 85, 1327–1329CrossRefGoogle Scholar
  3. Bertrand-Sarfati, J. (1976): An attempt to classify late Precambrian stromatolite microstructures.—In:Walter, M.R. (ed.): Stromatolites.—Developments in Sedimentology20, 251–259, New York (Elsevier)Google Scholar
  4. Browne, K.M. (1993): Lamination in Recent Bahamian subtidal stromatolites: origin and lithification.-unpubl. Ph.D. thesis, University of Miami, 296 p., Coral Gables, Fl.Google Scholar
  5. Dill, R.F. (1991): Subtidal stromatolites, ooids and crusted-lime muds at the Great Bahama Bank Margin.—In:Osborne, R.H. (ed.): From Shoreline to Abyss.-Soc. Econ. Paleont. Miner., Special Publication46, 147–171, TulsaGoogle Scholar
  6. Dill, R.F., Grotzinger, J.P. &Read, J.F. (1991): A comparison of elongated, subtidal stromatolites in high-energy bays of the Exuma Islands, Bahamas, to Paleozoic and Precambrian forms. —Geol. Soc. Amer., Abstracts with Programs,23/5, A439.Google Scholar
  7. Dill, R.F., Kendall, C.G.St.C. & Shinn, E.A. (1989) Giant subtidal stromatolites and related sedimentary features.— Field Trip Guidebook T373, 28th International Geological Congress, American Geophysical Union, 33 p., Washington, D.C.Google Scholar
  8. Dill, R.F., Shinn, E.A., Jones, A.T., Kelly, K. &Steinen, R.P. (1986): Giant subtidal stromatolites forming in normal salinity water.—Nature,324, 55–58CrossRefGoogle Scholar
  9. Dravis, J.J. (1983): Hardened subtidal stromatolites, Bahamas.— Science,219, 385–386.CrossRefGoogle Scholar
  10. Feldmann, M. (1995): Controls on stromatolite formation: a comparative study of modern stromatolites from the Bahamas with Messian examples from southeast Spain.—Ph.D. thesis, Swiss Federal Institute of Technology, 128 p., ZürichGoogle Scholar
  11. Feldmann, M. & McKenzie, J.A. (1994): Bahamian stromatolites: recent subtidal or sub-recent intertidal?—Abst. Death Valley International Stromatolite Symposium, Nevada, inserted page.Google Scholar
  12. Ginsburg, R.N. (1955): Recent stromatolitic sediments from south Florida: Journal of Paleontology,29, 723–724.Google Scholar
  13. Griffin, K.M. (1988): Sedimentology and paleontology of thrombolites and stromatolites of the Upper Cambrian Nopah Formation and their modern analog on Lee Stocking Island, Bahamas.—Unpubl. M. A. thesis, University of California, 117 p, Santa Barbara, Ca.Google Scholar
  14. Logan, B.W. (1961): Cryptozoan and associated stromatolites from the Recent, Shark Bay, western Australia.—Journal of Geology,58, 430–487.Google Scholar
  15. Macintyre, I.G., Reid, R.P. & Steneck, R.S. (in press): Growth history of stromatolites in a fringing Holocene reef complex. —Journal of Sedimentary Research.Google Scholar
  16. Macintyre, I.G., Reid, R.P. & Steneck, R.S. (1993): Holocene growth history of a stromatolite/algal ridge reef complex, Stocking Island, Bahamas.—Geological Society of America Abst. 25/6, A293.Google Scholar
  17. Monty, C.L.V. (1965): Recent algal stromatolites in the wind-ward lagoon, Andros Island, Bahamas.—Annales de la Société Géologique de Belgique,88, 269–276.Google Scholar
  18. — (1967) Distribution and structure of recent stromatolitic algal mats, eastern Andros Island, Bahamas.—Annales de la Société Géologique de Belgique, 90, 55–99.Google Scholar
  19. Monty, C.L.V. &Mas, J.R. (1981): Lower Cretaceous (Wealdian) blue-green algal deposits of the province of Valencia, eastern Spain.—In:Monty, C. (ed.): Phanerozoic Stromatolites, Case Histories.—p. 85–120, New York (Springer)Google Scholar
  20. Reid, R.P. &Browne, K.M. (1991): Intertidal stromatolites in a fringing Holocene reef complex in the Bahamas.—Geology, 19, 15–18.CrossRefGoogle Scholar
  21. Reid, R.P., Macintyre, I.G. &Post, J.E. (1992): Micritized skeletal grains in northern Belize lagoon: a major source of Mg-calcite mud.—Journal of Sedimentary Petrology,62, p. 145–156.Google Scholar
  22. Riding, R., Awramik, S.M., Winsborough, B.M., Griffin, K.M. &Dill, R.F. (1991): Bahamian giant stromatolites: microbial composition of surface mats.—Geological Magazine 128, 227–234.CrossRefGoogle Scholar
  23. Shapiro, R. (1991): Morphological variations within a modern stromatolite field: Lee Stocking Island, Exuma Cays, Bahamas. —Proceedings of the 4th Symposium on the Geology of the Bahamas, San Salvador, p. 209–219.Google Scholar
  24. Steneck, R.S., Miller, T.E., Reid, R.P. &Macintyre, I.G. (1993): Ecological factors controlling the distribution and abundance of intertidal stromatolites, Stocking Island, Bahamas.— Geological Society of America Abstr. 25/6, A293.Google Scholar
  25. Walter, M.R. (1983): Archean stromatolites: evidence of the Earth’s earliest benthos.—In:Schopf, J.W. (ed.): Earth’s Earliest Biosphere, it’s origin and evolution.—Princeton University Press, p. 187–213, Princeton, N.J.Google Scholar
  26. Whittle, G.L., Kendall, C.G.St.C., Dill, R.F. &Rouch, L. (1993): Carbonate cement fabrics displayed: a traverse across the margin of the Bahamas Platform near Lee Stocking Island in the Exuma Cays.—Marine Geology,110, 213–243.CrossRefGoogle Scholar
  27. Wilson, J.L. (1975): Carbonate Facies in Geologic History.— 471 p., New York (Springer)Google Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1995

Authors and Affiliations

  • R. Pamela Reid
    • 1
  • Ian G. Macintyre
    • 2
  • Kathleen M. Browne
    • 3
  • Robert S. Steneck
    • 4
  • Timothy Miller
    • 4
  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of Miami
  2. 2.Dept Paleobiology, MRC 125National Museum of Natural History, Smithsonian InstitutionWashington D.C.
  3. 3.Dept. of Geology and Marine ScienceRider UniversityLawrenceville
  4. 4.Dept. of OceanographyUniversity of Maine, Darling Marine CenterWalpole

Personalised recommendations