, Volume 38, Issue 1, pp 1–88 | Cite as

The reef cave dwelling ultraconservative coralline demospongeAstrosclera willeyanaLister 1900 from the Indo-Pacific

  • Gert Wörheide


Astrosclera willeyanaLister 1900 is a pyriform-half spherical, predominantly bright orange colored, coralline demosponge with a mean size of about 20 mm in height and maximum head diameter. The habitat ofAstrosclera is generally restricted to cryptic and light reduced environments of the Indo-Pacific, found mainly in reef caves, but sometimes also in the dim-light areas of cave entrances and overhangs, where it is green colored at the side towards the light. Caves of Indo-Pacific coral reefs were divided into four major facies zones, named 1 to 4 with decreasing light intensities.Astrosclera occurs in reef caves on a carbonate basement in Zone 2, 3, and 4, reaching maximum abundance in Zone 3 and the proximal part of Zone 4, but rare in the distal, very dark areas of Zone 4. Other abundant coralline sponges in reef caves areSpirastrella (Acanthochaetetes) wellsi andVaceletia crypta. Astrosclera is the most common coralline sponge throughout the studied sites of the Indo-Pacific.

The living tissue ofAstrosclera penetrates the basal skeleton to a maximum of 50% depending on specimen size. The soft tissue shows a stromatoporoid grade of organization and can be divided into three major zones. The ectosome is the area directly beneath the exopinacoderm reaching a thickness of about 100–300 μm. The ectosome is characterized by the absence of choanocyte chambers, an enrichment of storage and supporting cells (SSC's), and the archaeocyte-like large vesicle cells (LVC's), which are responsible for the initial formation of aragonitic spherulites. Megasclerocytes were only rarely observed, but show remarkably numerous cytoplasmatic digitations. The choanosome, contiguous with the ectosome but with a more-or-less sharp transition, comprises the major part of the living tissue inAstrosclera, characterized by small choanocyte chambers (±15 μm diameter) and a high density of bacterial symbionts. Other cellular components of the choanosomal mesohyle are archaeocytes, typical pluripotent, phagocytotic demosponges cells, SSC's, and rare fiber cells. Bacteriocytes, which inhabit up to 30 bacteria in a large vacuole, are described for the first time from coralline sponges, as well as a new cell type, the ‘waste cell’, characterized by a large vacuole which is filled up with a fluffy substance, probably non-digested remains of bacteria (membranes, fibrilar EPS). These cells probably derive from archaeocytes or bacteriocytes and are often observed close to excurrent canals. Most of the ground substance of the choanosome lacks collagen and spongin, but has abundant polysaccharide mucus (EPS) produced by the symbiotic bacteria. The zone of epitaxial backfill (ZEB) is considered as a subzone of the choanosome due to its important role for thesyn vivo cementation of the lowest parts of the basal skeleton. It is characterized by a reduced number (or absence) of choanocytes and bacteria and sometimes an enrichment of SSC's.

Astrosclera has a viviparous mode of reproduction. The bacterial symbionts are transferred from the parent sponge in the parenchymella larvae. A large proportion of the population inhabit the choanosome, where the bacteria can reach up to 70% of the total biomass in some areas. The ectosome is nearly free of bacteria. Four major bacterial morphotypes are recognized. Bacteria act either as a direct food source for the sponge (archaeocytes), or the sponge benefits from certain metabolic products of the bacteria (bacteriocytes). Bacteria are at least in part facultative anaerobic, eliminating metabolic waste products of the sponge through fermentative processes during times of reduced or ceasated pumping, or at any time.

The spicular skeleton ofAstrosclera consists of megascleres; microscleres are absent. The basic spicule type is a sub-verticillate—verticillate acanthostyle, of theAgelas type, with a mean length of 80 μm. The spicule morphology and size is highly variable, depending on the geographic origin of the specimen. At the broader proximal end of the spicule (showing a thickening in nearly all populations) the spicule is embedded in spongin microfibrils. As the sponge grows, the spicules get entrapped in the basal skeleton, initially at the proximal end. Based on similar spicule morphology, six ‘groups with similar spicule morphology’ (GSSM's) are differentiated. These GSSM's probably represent geographic sub-species.

Restriction fragment length analysis of the ribosomal DNA (ITS1, 5.8S, ITS2, and small parts of the 18S and 28S regions) was analyzed to test the genetic variation of twenty speciments from five geographical distinct areas (representing three of the GSSM groups based on the spicule morphology). However, the restriction fragment length analysis did not detect any genetic differences that would indicate that there is more than one species ofAstrosclera amongst the specimens examined.

The aragonitic calcareous basal skeleton ofAstrosclera is composed of 20–60 μm-sized aragonitic spherulites, produced by a combination of three processes. First, the spherulites are formed in LVC's in the ectosome. In a second process, the basopinacocytes transport the spherulites to the tips of the skeletal pillars, where they fuse together by epitaxial growth; and in a third process, during upward growth, the soft tissue is slowly rejected from the lowermost-parts of the skeletal cavities and the remaining spaces are subsequently filled by epitaxially-growing aragonite fibers. It is hypothesized thatAstrosclera is able to control the rate of calcification by the regulation of its bacterial population. The mean growth rate ofAstrosclera was measured at 230 μm per year.

Aminoacid and monosaccharide composition of the insoluble intracrystalline matrix (IOM) of the largestAstrosclera ever found (with a maximum age of 550 years) is very stable in all portions of the skeleton. No strong diagenetic effect on the IOM is visible due to the stable composition in all parts of the skeleton, in contrast to the SOM which shows strong diagenetic effects with increasing age of the skeleton, both in aminoacid and monosaccharide composition and quantity. The IOM is dominated by proteins and is represented by the intravacuolar fibers and sheets forming the containers for the seed crystals in the first intracellular process of biocalcification. The nature of the IOM during the second and third process remains unknown without further investigation. Collagen was not detected as a major part of the IOM. The character of the SOM is very typical for Ca2+ binding mucus substances. Two proteins present in the SOM were detected by HPLC gel filtration chromatography, visible at 280 nm wave length detection: a large molecule with a molecular weight of 130 kD, and a smaller one with about 40 kD. Both macromolecules are attributed to have a different function in the biocalcification processes.

Stable isotope time series (46 samples) of δ18O and δ13C were measured in successive growth layers of the largeAstrosclera from Ribbon Reef#10 (GBR).Astrosclera forms its skeletal aragonite in equilibrium with the ambient seawater, and represents, therefore, a high precision recorder of the isotopic history of the ambient seawater. δ13C of surface water dissolved inorganic carbon in the northern Great Barrier Reef has apparently decreased continuously since the mid-16th century. The total decrease is 0.7‰. The major decline of 0.5‰ occurred during the industrial period of the 19th and 20th century, likely to be due to the increased release of CO2 by deforestation and burning of fossil fuel during the period of industrialization after 1850 (increased input of lighter carbon isotopes). The oxygen isotope history shows a slightly colder (and/or dryer) phase before 1850, which correlates with the Little Ice Age. A considerable shift to lighter values occurred during the 20th century (warming of SST). This may be due to an anthropogenic greenhouse effect. Most of the major climatic changes caused by ENSO/El Niño events as well as by large volcano eruptions in the last four and a half centuries were recorded in the oxygen isotope record ofAstrosclera.

A large number of sponges with spherulitic microstructures were observed in the Triassic deposits of St. Cassian (Carnian, Dolomites) and of the Alacir Clay Valley near Antalya (lower Norian, Turkey). At least some of the sponge skeletal morphologies, certainly belonging to different taxa thanAstrosclera, appear to have been formed by the same processes as observed in extantAstrosclera. It was found that morphological characters of the ‘spherulitic skeleton’, even though they show signs of same formation processes, have no higher taxonomic value. The spherulitic skeleton must have had appeared independently in different lineages, and thus can be regarded as a convergent character.

Although the spherulitic basal skeleton was determined to have no higher taxonomic value, it was nevertheless used to identify sponges with affinities to the extantAstrosclera, since the Triassic ‘astrosclerid’ sponges lack spicules. Only one type of sponge belonging to the taxonAstrosclera was found in the Triassic deposits of Antalya. This sponge shows a gross morphology similar to extantA. willeyana, and all the features of the three distinct biocalcification processes leading to the formation of the basal skeleton are present. Spicules, thick, short subacanthostyles/styles, were found in this specimen. A new species,Astrosclera cuifi n. sp. is described in this present work, and it is shown that the ultraconservative taxonAstrosclera has persisted at least since the late Triassic.


Astrosclera Coralline demonsponges Porifera Reef caves Indo-pacific Great barrier reef Micromorphology Ultrastructure Biocalcification Isotope Record El niño history Taxonomy Biogeography Phylogeny Triassic Recent 

Micromorphology, Ultrastructure, Biocalcification, Isotope Record, Taxonomy, Biogeography, Phylogeny


  1. Addadi, L. &Weiner, S. (1989): Stereochemical and structural relations between macromolecules and crystals in biomineralization. —In:Mann, S., Webb, J. &Williams, R.J.P. (eds.): Biomineralization.—133–156, Weinheim (VCH).Google Scholar
  2. Adlard, R.D. &Lester, R.J.G. (1995): Development of a diagnostic test for Mikrocytos roughleyi, the aetiological agent of Australian winter mortality of the commercial rock oyster, Saccostrea commercialis (Iredale & Roughley).—J. Fish Diseases,18, 609–614.CrossRefGoogle Scholar
  3. Alvarezde Glasby, B. (1996): The phylogenetic relationships of the family Axinellidae (Porifera: Demospongiae).—204 p., Ph.D. Thesis, Australian National University, Division of Botany and Zoology, Canberra.Google Scholar
  4. Anderson G.R. &Barker S.C. (1993): Species differentiation in the Didymozoidae (Digenea): restriction fragment length differences in internal transcribed spacer and 5.8S ribosomal DNA.—Int. J. Parasitology,23, 133–136.CrossRefGoogle Scholar
  5. Anderson, T.F. & Arthur, M.A. (1983): Stable isotopes of oxygen and carbon and their application to sedimentologic and palaeoenvironmental problems.—In:Arthur M.A., Anderson T.F., Kaplan I.R., Vfizer J. & Land L.S. (eds.): Stable Isotopes and Sedimentary Geology.—Soc. Econ. Paleont. Miner. Short Course No.10, 1437 p., Dallas.Google Scholar
  6. Ax, P. (1996): Das System der Metazoa. ein Lehrbuch der Phylogenetischen Systematik.—226 pp Stuttgart (Fischer)Google Scholar
  7. Ayling, A. (1982): Redescription ofAstrosclerawilleyanaLister 1900 (Ceratoporellida, Demospongiae), a new record from the Great Barrier Reef.—Mem. Nat. Mus. Victoria,43, 99–103.Google Scholar
  8. Basile, L.L., Cuffey, R. &Kosich, D.F. (1984): Sclerosponges, Pharetronoids and Sphinctozoans (relict cryptic hard-bodied porifera) in the modern reefs of Enetewak Atoll.—J. Paleont,58, 636–650.Google Scholar
  9. Bohm, F., Joachimski, M.M., Lehnert, H., Morgenroth, G., Kretschmer, W., Vacelet, J. &Dullo, W.-Chr. (1996): Carbon isotope records from extant Caribbean and South Pacific sponges: Evolution of δ13C in surface water DIC.— Earth and Planetary Science Letters,139, 291–303.CrossRefGoogle Scholar
  10. Borojevic, R. &Levi, C. (1964): Etude au microscope électronique des cellules de l'eponge: Ophlitaspongia seriata (Granr) au cours de la réorganisation après dissociation.—Z. Zellforsch.,64, 708–725.CrossRefGoogle Scholar
  11. Boury-Esnault, N. (1977): A cell type in sponges involved in the metabolism of glycogen: the Gray cells.—Cell. Tiss. Res.,175, 523–539.CrossRefGoogle Scholar
  12. Bretting, H., Jacobs, G., Donadey, C. &Vachet, J. (1983): Immunohistochemical studies on the distribution and function of the D-galactose-specific lectins in the spongeAxinella polypoides (Schmidt)—Cell. Tiss. Res.,229, 551–571.CrossRefGoogle Scholar
  13. Briggs, J.C. (1984): Centers of origin in biogeography.—Biogeography Monography 1, University of Leeds, Leeds.Google Scholar
  14. Craig, H. (1957): Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochimica Cosmochimica Acta,12, 133–149.CrossRefGoogle Scholar
  15. Cuif, J.-P. (1972): Node sur les Madréporaires triasiques à fibres aragonitiques conservées.—C. R. Acad. Sci. Paris,274 (1): 1272–1275.Google Scholar
  16. — (1974): Role des sclérosponges dans la faune récifale du Trias des Dolomites (Italie du Nord).—Geobios,7/2, 139–153.Google Scholar
  17. — (1983): Chaetetida à microstructure sphérolitique dans le Trias supéririeur de Turquie.—C. R. Acad. Sci Paris,296/2, 1469–1472.Google Scholar
  18. Cuif, J.-P. &Gautret, P. (1991): Taxonomic value of microstructural criteria for calcified Demospongiae phylogeny.— In:Reitner, J. &Keupp, H. (eds.), Fossil and Recent sponges. —159–169, Berlin (Springer)Google Scholar
  19. Decho, A.W. (1990): Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes.— Oceanograph. Mar. Biol. Ann. Rev.,28, 73–153.Google Scholar
  20. Degens, E.T. (1989): Perspectives on Biogeochemistry.—423 p., Berlin (Springer).Google Scholar
  21. Dickson, J.A.D. (1965): Carbonate identification and genesis as revealed by staining.—J. Sed. Petrol.,36, 491–505.Google Scholar
  22. Dover, G. &Coen, E. (1981): Springeleaning ribosomal DNA: a model for multigene evolution?—Nature,290, 731–732.CrossRefGoogle Scholar
  23. Druffel, E.M. andBenavides, L.M. (1986): Input of excess CO2 to the surface ocean based on13C/12C ratios in a banded Jamaican sclerosponge.—Nature,321, 58–61.CrossRefGoogle Scholar
  24. Druffel, E.M. &Griffin, S. (1993): Large Variations of Surface Ocean Radiocarbon: Evidence of Circulation Changes in the Southwestern Pacific.—J. Geophys. Research,C 98, 20249–20259.Google Scholar
  25. Dupont, J. (1988): The Tonga and Kermadec Ridges.—in:Nairn, A.E.M., Stehli, F.G. &Uyeda, S. (eds.) The Ocean Basins and Margins, Vol. 7b. The Pacific Ocean, pp. 375–409. New York (Plenum Press.Google Scholar
  26. Engeser, T.S. &Taylor, P.D. (1989): Supposed Triassic bryozoans in the Klipstein collection from the Italian Dolomites redescribed as calcified demosponges.—Bull. Br. Mus. Nat. Hist.,45 (1), 39–55.Google Scholar
  27. Folland, C.K., Karl, T.R. &Vinnikov, K.Y. (1990): Observed climate variations and change.—In:Houghton J.T., Jenkins G.J. &Ephraums J.J. (eds.): Climate Change. pp. 197–238. Cambridge (IPCC Scientific Assessment).Google Scholar
  28. Gallissian, M.-F. &Vacelet, J. (1976): Ultrastructure de quelques stades de l'ovogènese de spongiaires de genreVerongia (Dictyoceratida).—Ann. Sci. Natur. Zool. Paris18, 381–404.Google Scholar
  29. Garrone, R., Simpson, T.L. &Pottu-Boumendil, J. (1981): Ultrastructure and deposition of silica in sponges.—In:Simpson, T.L. &Voicani, B.E. (eds.): Silicon and Siliceous structures in Biological Systems, pp. 495–525, New York (Springer).Google Scholar
  30. Gautret, P. (1986): Utilisation taxonomique des charactéres mierostructuraux du squelette aspiculaire des spongiaires. Etude du mode de formation des microstructures attribuées au type sphérolitique.—Annales de Paléontologie (Vert.-Invert.),72, 75–110.Google Scholar
  31. Gautret, P. &Marin, F. (1990): Composition en acides amines des phases proteiques solubles et insolubles de trois demosponges actuelles:Ceratoporella nicholsoni (Hickson),Astrosclera willeyanaLister etVaceletia crypta (Vacelet). —C.R. Acad. Sc. Paris,3102, 1369–1374.Google Scholar
  32. Gautret, P., Reitner, J. &Marin, F. (1996): Mineralisation events during growth of the coralline spongesAcanthochaetetes andVaceletia.—Bull. Inst. Ocean. Monaco, nom.spec.14/4, 325–334.Google Scholar
  33. Hartman, W.D. (1969): New genera and species of coralline sponges (Porifera) from Jamaica.—Postilla,137, 1–39.Google Scholar
  34. Hartman, W.D. (1980): Ecology of Recent Sclerosponges.—In:Hartman, W. D., Wendt, J.B. & Wiedenmayer, F. (eds.). Living and Fossil Sponges—Notes for a short course (Sedimenta VIII), pp. 253–255Google Scholar
  35. — (1981): Form and distribution of silica in sponges. In:Simpson, T.L. &Volcani, B.E. (eds.): Silicon and Siliceous structures in Biological Systems, pp. 453–493, Berlin (Springer).Google Scholar
  36. Hartman, W.D. &Goreau, T.F. (1966):Ceratoporella, a living sponge with stromatoporoid affinities.—Amer. Zool.,6, 563–564.Google Scholar
  37. Hartman, W.D. & Goriau, T.F. (1970): Jamaican coralline sponges: their morphology, ecology, and fossil relatives.—In:Fry, W.G. (ed.): The Biology of Porifera.—Symp. Zool. Soc. London,25, 205–243.Google Scholar
  38. —— (1975): A Pacific Tabulate Sponge: Living Representative of a new Order of Sclerosponges.—Postilla,167, 1–21.Google Scholar
  39. Hartman, W.D. &Willenz, Ph. (1990): Organization of the choanosome of three Caribbean sclerosponges.—In:Rützler, K. (ed.): New Perspectives in Sponge Biology.— pp. 229–236. Washington D.C. (Smithosonian Inst.).Google Scholar
  40. Hennig, W. (1966): Phylogenetic Systematics.—University of Illinois Press, Urbana.Google Scholar
  41. Hickson, S.J. (1911): OnCeratopora, the type of a new family of Alcyonaria.—Proc. Roy. Soc. London, Ser. B,84, 195–200.Google Scholar
  42. Hillis, D.M., Moritz, C. &Mable, B.K. (1996): Molecular Systematics.—2nd ed., Sunderland (Sinaur)Google Scholar
  43. Howorth, R. &Carman, G. (1992): Introduction to the geology of the Astrolabe Islands, Fiji.—In:Morrison, R.J. &Naqasima, M.R. (eds.): Fiji's Great Astrolabe Reef and Lagoon: a baseline study.—Environmental Studies Report 56. pp. 23–47, Suva (Institute of Natural Resources, University of the South Pacific).Google Scholar
  44. Jahn, T., König, G.M., Wright, A.D., Wörheide, G. &Reitner, J. (1997): Manazacidin D: An unprecedented secondary metabolite from the ‘living fossil’ spongeAstrosclera willeyana. —Tetrahedon Letters,38/22, 3883–3884.CrossRefGoogle Scholar
  45. Joachimski, M.M., Böhm, F. & Lehnert, H. (1995): Longterm Isotopic Trends from Caribbean Demosponges: Evidence for Isotopic Disequilibrium between Surface Waters and Atmosphere. —In:Lathuiliere, B. & Geister, J. (eds.): Proc. 2nd Europ. Regional Meeting, Int. Soc. Reef Stud., Publ. Serv. géol. Luxembourg,29, 141–147.Google Scholar
  46. Kazmierczak, J., Ittekot, V. &Degens, E.T. (1985): Biocalcification through time: environmental challenge and cellular response. —Paläont. Z.,59, 15–33.Google Scholar
  47. Keeling, C.D., Bacastow, R.B., Carter, A.F., Piper, S.C., Whorf, T.P., Heimann, M., Mook, W.G. andRoeloffzen, H. (1989): A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. —In:Peterson D.H. (ed.): Aspects of Climate Variability in the Pacific and the Western Americas, pp. 165–236. Washington D. C. (American Geophysical Union).Google Scholar
  48. Kempe, S. &Degens, E.T. (1985): An early Soda ocean?—Chemical Geology,53, 95–108.CrossRefGoogle Scholar
  49. Kidder, G.W. (1967): Nitrogen: distribution, nutrition and metabolism.—In:Florkin, M. &Scheer, B.T. (eds.): Chemical zoology, Vol. 1: Protozoa, pp. 93–159, New York, Academic Press).Google Scholar
  50. Kirkpatrick, R. (1910): On a remarkable Pharetronid Sponge from Christmas Island.—Proceedings of the Royal Society,83, 124–133.CrossRefGoogle Scholar
  51. LaMarche, V.C. &Hirschboeck, K.K. (1984): Frost rings in trees as records of major volcanic eruptions.—Nature,307, 121–126.CrossRefGoogle Scholar
  52. Lange, R. (1997): Isolierung und Characterisierung von biomineralisierenden Proteinen aus den ultrakonservativen SchwämmenSpirastrella wellsi, Astrosclera willeyana undVaceletia nova species.—54 p., unpubl. Diploma-Thesis, FB Chemie, Freie Univ. Berlin.Google Scholar
  53. Lévi, C. &Lévi, P. (1976): Embryogenése deChondrosia reniformis (Nardo), demosponge ovipare, et transmission des bactéries symbiótiques.—Annls. Sci. Nat.,18, 367–380.Google Scholar
  54. Levitus, S. (1982): Climatological Atlas of the World Ocean.—NOAA Professional Papers.13, 1–173.Google Scholar
  55. Lister, J.J. (1990):Astrosclera willeyana, the type of a new family of sponges.—Zoological Results,4, 461–482.Google Scholar
  56. Lowenstam, H.A. (1981): Minerals formed by organisms.—Science,211, 1126–1131.CrossRefGoogle Scholar
  57. Lowenstam, H.A. &Weiner, S. (1989): On Biomineralization.—324 p., Oxford (Univ. Press).Google Scholar
  58. Löwenberg, A. (1977): Biomarker aus corallinen Schwämmen kryptischer Flachwasserhabitate (Großes Barriere Riff).—83 p., unpubl. Diploma-Thesis, FB Geowiss., Univ. Hamburg.Google Scholar
  59. MacCracken, M.C. (1995): The evidence mounts up.—Nature,376, 645–646.CrossRefGoogle Scholar
  60. Mann, S., Webb, J. &Williams, R.J.P. (1989): Biomineralization.—541 p., Weinheim (VCH).Google Scholar
  61. Nozaki, Y., Rye, D.M., Turekian, K.K. &Dodge, R.E. (1978): A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral.—Geophysical Research Letters,5, 826–828.Google Scholar
  62. Poisson, A. (1977): Recherches geologiques dans les Taurides occidentales.—PhD thesis, Univ. Paris sur, Orsay.Google Scholar
  63. Quinn, W.H., Neal, V.T. &Antunez de Mayolo, S.E. (1987): El Niño occurences over the past four and a half centuries.—J. Geophys. Res.,92 (C13), 14,449–14,461.CrossRefGoogle Scholar
  64. Reiss, Z. &Hottinger, L. (1984): The Gulf of Aqaba-Ecological Micropaleontology.—Ecological Studies,50, Berlin (Springer).Google Scholar
  65. Reiswig, H.M. (1971): Particle feeding in natural populations of three marine demosponges.—Biol. Bull.,141, 568–591.Google Scholar
  66. Reiswig, H.M. (1975): Bacteria as food for temperature-water marine sponges.—Can. J. Zool.,53, 582–589.CrossRefGoogle Scholar
  67. Reiswig, H.M. (1981): Partial carbon and energy budgets of the bacteriospongeVerongia fistularis (Porifera: Demospongiae) in Barbados. Publicazioni della Stazione Zoologica de Napoli I, Mar. Ecol.,2, 273–293.Google Scholar
  68. Reitner, J. (1987):Ellzkadiella erenoensis n. gen. n. sp., ein Stromatopore mit spikulärem Skelett aus dem Oberapt von Ereño (Prov. Guipuzcoa, Nordspanien) und die systematische Stellung der Stromatoporen.—Paläont. Z.,61 (3/4), 203–222.Google Scholar
  69. — (1989): Lower and Mid-Cretaceous Coralline Sponge Communities of the Boreal and Tethyan Realms in Comparison with the Modern Ones. In:Wiedmann, J. (ed.): Cretaceous of the Western Tethys. pp. 851–878. Proceedings of the 3rd International Cretaceous Symposium. Tübingen 1987, Stuttgart (Schweizerbart).Google Scholar
  70. — (1991): Phylogenetic aspects and new descriptions of spicule-bearing hadromerid sponges with a secondary calcareous skeleton (Tetractinomorpha, Demospongiae).—In:Reitner, J. &Keupp, H. (eds.), Fossil and Recent Sponges.—pp. 179–211, Berlin (Springer).Google Scholar
  71. — (1992): Coralline Spongien'-Der Versuch einer phylogenetisch-taxonomischen Analyse.—Berliner Geowiss. Abh. Reihe E,1, 1–352.Google Scholar
  72. — (1993): Modern Cryptic Microbialite/Metazoan Facies from Lizard Island (Great Barrier Reef, Australia).—Formation and Concepts.—Facies,29, 3–40.Google Scholar
  73. Reitner, J. (1995): Origin andevolution of Porifera.—In:Comas-Rengifo, M.J., Perejón, A. Rodríguez, S. & Sando, W.J. (eds.): Abstracts, VII International Symposium on Fossil Cnidaria and Porifera, Madrid, Spain, September 1995: 69–70.Google Scholar
  74. Reitner, J. (1996): Paläobiologie und Taphonomie von Porifera Akkumulationen auf submarinen Kuppen und verbundenen Becken. Ein Beitrag zur Genese von rezenten und fossilen Autochthonspikulithen und Porifera-Mud Mounds.—unpubl. Report of the DFG Project Re 665/5 ‘Spikulithe’, 22pp, Univ. of Göttingen.Google Scholar
  75. Reitner, J. &Engeser, T. (1987): Skeletal structures and habitates of recent and fossilAcanthochaetetes (subclass Tetractinomorpha, Demospongia, Porifera).—Coral Reefs,6, 151–157.CrossRefGoogle Scholar
  76. Reitner, J. &Gautret, P. (1996): Skeletal formation in the ultraconservative modern chaetetid spongeSpirastrella (Acanthochaetetes) wellsi (Demospongiae, Porifera).—Facies,34, 193–208.Google Scholar
  77. Reitner, J. &Mehl, D. (1996): Monophyly of the Porifera.—Verh. Naturwiss. Ver. Hamburg, (NF)36, 5–32.Google Scholar
  78. Reitner, J. &Wörheide, G. (1995): New Recent sphinctozoan coralline sponge from the Osprey Reef (N′ Queensland Plateau, Australia).—Fossil Cnidaria & Porifera,24/2, Part B, 70–71.Google Scholar
  79. Reitner, J., Neuweiler, F. & Gunkel, F. (eds.) (1996a): Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Reports.—Göttinger Arb. Geol. Paläont., Sb2.Google Scholar
  80. Reitner, J., Wörheide, G., Thiel, V. & Gautret, P. (1996b): Reef Caves and Cryptic Habitats of Indo-Pacific Reefs-Distribution Patterns of Coralline Sponges and Microbialites.—In:Reitner, J., Neuweiler, F. & Gunkel, F. (eds.): Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Repots.—Göttinger Arb. Geol. Paläont., Sb2, 91–100.Google Scholar
  81. Reitner, J., Wörheide, G., Lange, R. &Thiel, V. (1997): Biomeneralization of calcified skeletons in three Pacific demosponges-an approach to the evolution of basal skeletons.—Cour. Forsch.-Inst. Senckenberg,201, 371–383.Google Scholar
  82. Romanek, C.S., Grossman, E.L., andMorse, J.W. (1992): Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate.—Geochimica Cosmochimica Acta,56, 419–430.CrossRefGoogle Scholar
  83. Romeis, B. (1989): Mikroskopische Technik.—17. Edition, revised and edited byP. Böck, 697 p., München (Urban & Schwarzenberg).Google Scholar
  84. Rosen, B.R. (1988): Progress, problems and patterns in the biogeography of reef corals and other tropic marine organ isms.—Helgol. Meeresunters.,42, 269–301.CrossRefGoogle Scholar
  85. Sandberg, P.A. (1975): New interpretations of Great Salt Lake ooids and of ancient non skeletal carbonate mineralogy.— Sedimentology,22, 497–537.CrossRefGoogle Scholar
  86. Sandberg, P.A. (1983): An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy.—Nature,305, 19–22.CrossRefGoogle Scholar
  87. Santavy, D.L., Willenz, P. &Colwell, R.R. (1990): Phenotypic study of bacteria associated with the Caribbean sclerospongeCeratoporella nicholsoni.—Applied and Environmental Microbiology,56(6), 1750–1762.Google Scholar
  88. Schumann-Kindel, G., Bergbauer, M. & Reitner, J. (1996): Bacteria associated with Mediterranean sponges—in:Rhtner, J., Neuweiler, F. & Gunkel, F. (eds.): Global and Regional Controls on Biogenic Sedimentation. 1. Reef Evolution. Research Reports.—Göttinger Arb. Geol. Paläont., Sb2. 125–128.Google Scholar
  89. Schumann-Kindel, G., Bergbauer, M., Manz, W. Szewzyk, U. & Reitner, J. (1997): Aerobic and anaerobic microorganisms in modern sponges: A possible relationship to fossilization-processes. —In:Neuweiler, F., Reitner, J. & Monty, C. (eds.): Biosedimentology of microbial buildups: IGCP Project No. 380, Proceedings of the 2nd meeting, Göttingen. Germany 1996.—Facies,36, 268–276.Google Scholar
  90. Sellers, W.D. (1965): Physical Climatology.—272 p., Chicago (Univ. of Chicago Press).Google Scholar
  91. Senowbari-Daryan, B. &Rigby, K. (1988): Upper Permian segmented sponges from Djebel Tebaga, Tunesia.—Facies,19, 171–250.Google Scholar
  92. Simkiss, K. (1986): The process of biomineralization in lower plants and animals—an overview.—In:Leadbeater, B.S.C. & Riding, R. (eds.): Biomineralization in lower plants and animals.—The Syst. Assoc. Spec. Vol.30, 19–38.Google Scholar
  93. Simpson, T.L. (1978): The biology of the marine spongeMicroconia prolifera (Ellis & Sollander). III. Spicule sectretion and the effect of temperature on spicule size.—J. Exp. Mar. Biol. Ecol.,35, 31–42.CrossRefGoogle Scholar
  94. Simpson, T.L. (1984): The Cell Biology of Sponges.—633 p. Berlin (Springer).Google Scholar
  95. Simpson, T.L., Gil, M., Connes, R., Diaz, J.-P. &Paris, J. (1985): Effects of Germanium (Ge) on the silica spicules of the marine spongeSuberites domuncula: Transformation of spicule type.—J. Morph.,183, 117–128.CrossRefGoogle Scholar
  96. Smith, A.G., Smith, D.G. &Funnel, B.M. (1994): Atlas of Mesozoic and Cenozoic coastlines.—99p. Cambridge (Cambridge University Press).Google Scholar
  97. Soest, R.W.M. van (1984): DeficientMerlia normaniKirkpatrick 1908 from the Curacao reefs, with a discussion on the phylogenetic interpretation of sclerosponges.—Bijdr. Dierkd.,54, 211–219.Google Scholar
  98. Sollas, W.J. (1888): Report on the Tetractenellida collected by H.M.S. Challenger during the years 1873–1876.—Report Challenger, Zool., 25:1–458.Google Scholar
  99. Stearn, C.W. (1972): The relationship of the stromatoporoids to the sclerosponges.—Lethaia,5, 369–388Google Scholar
  100. — (1975): The stromatoporoid animal.—Lethaia,8, 89–100.Google Scholar
  101. — (1977): Studies of stromatoporoids by scanning electron microscopy.—BRGM Mém.,89, 33–40.Google Scholar
  102. — (1984): Growth forms and macrostructural elements of the coralline sponges.—Palaeontographica Americana,54, 315–325.Google Scholar
  103. Stearn, C.W. &Pickett, J.W. (1994): The stromatoporoid animal revisited: Building the skeleton.—Lethain,27, 1–10.Google Scholar
  104. Tarutani, T., Clayton, R.N. &Mayeda, T.K. (1969): The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. —Geochimica Cosmochimica Acta,33, 987–996.CrossRefGoogle Scholar
  105. Termier, H. &Termier, G. (1973): Stromatopores, sclerosponges et pharetrones: les ischyrospongia.—Ann. Mines et de la Geologie,26, 285–297.Google Scholar
  106. Termier, H. &Termier, G. &Vachard, D. (1977): Monographie paléontologique des affleurements Permiens du Djebel Tebaga (Sud Tunesien).—Palaeontographica, (A),156, 1–109.Google Scholar
  107. Thiel, V. (1997): Organische Verbindungen in Porifera und biogenen Carbonaten—Fazies, Chemotaxonomie und molekulare Fossilien.—145 p., unpubl. Ph.D. thesis, Univ. Hamburg.Google Scholar
  108. Thiel, V., Jenisch, A. Wörheide, G., Lowenberg, A., Reitner, J. & Michaelis, W. (in press): Mid-chain branched alkanoic acids from ‘living fossil’ demosponges: a link to ancient sedimentary lipids?—Organic Geochemistry.Google Scholar
  109. Thompson, J.E., Barrow, K.D. &Faulkner, D.J. (1984): Localization of two brominated metabolites, aerothionin and homoaerothionin, in spherulous cells of a marine demosponge,Aplysina fistularis (Verongia thiona).—Acta Zool.,64/4, 199–210.CrossRefGoogle Scholar
  110. Uriz, M.-J., Rosell, D. &Maldonado, M. (1992): Parasitism, commensalism or mutualism? The case of Scyphozoa (Coronatae) and horny sponges.—Mar. Ecol. Prog. Ser.,81, 247–255.Google Scholar
  111. Vacelet, J. (1967a): Quelques éponges pharétronides et ‘silicocalcaires’ des grottes sous-marines obseures.—Rec. Trav. Stat. mar. Endoume,58(42), 121–132.Google Scholar
  112. — (1967b): Les cellules à inclusions de l'éponge cornéeVerongia cavernicola Vacelet.—J. microsc.,6, 237–240.Google Scholar
  113. — (1970): Les éponges pharétronides actuelles.—In:Fry, W.G. (ed.): The Biology of Porifera.—Symp. Zool. Soc. London,25, 189–204, London (Academic Press).Google Scholar
  114. — (1975): Étude en microscopiie électronique de l'association entre bactéries et spongiaires du genreVerongia (Dyctioceratida). —J. Micros. Biol. Cell.,23, 271–288.Google Scholar
  115. — (1977): Éponges pharétronides actuelles et sclérosponges de Polynésie Francaise, de Madagascar et de la Réunion.—Bull. Mus. Nat. Hist. Natur. Paris. 3rd Ser.,444 (Zool. 307), 345–368.Google Scholar
  116. Vacelet, J. (1979): Description et affinitiés d'un éponge Sphinetozoaire actuelle—In:Levi, C. & Boury-Esnauit, N. (eds.): Biologie des Spongiaries.—Coll. Internat. CNRS. Paris,291, 483–491.Google Scholar
  117. — (1981): Éponges hypercalcifeé (‘Pharétronides’, ‘Sclérosponges’) des cavités des récifs eralliens de Nouvelle-Calédonie.— Bull. Mus. Nat. Hist. Natur. Paris. (4. Ser., Sekt, A. Nr. 2),3 313–351.Google Scholar
  118. — (1985): Coralline sponges and the evolution of Porifera.—In:Conway Morris, S., Georgi, J.D., Gibson, R. &Platt, H.M. (eds.): The origin and relationships of lower invertebrates. The Systematics Association Special Volume28, 1–13, Oxford (Clarendon Press).Google Scholar
  119. Vacelet, J. &Donadey, C. (1977): Electron Microscope Study of the Association between some Sponges and Bacteria.—J. exp. mar. Biol. Ecol.30, 301–314.CrossRefGoogle Scholar
  120. Vacelet, J. &Lévi, C. (1958): Un cas de survivance, en Méditerranée, du groupe d'éponges fossiles des pharétronides. —C.R. Hebd. Séan. Acad. Sci. Paris246, 318–320.Google Scholar
  121. Vacelet, J. &Vassfur, P. (1965): Spongiaires des grottes et surplombs des récifs de Tuléar (Madagascar).—Rec. Trav. S tat. mar. Endoume. Suppl4, 71–123.Google Scholar
  122. — (1971): Éponge des récifs coralliens de Tuléar (Madagascar). —Téthys., Suppl.1, 51–126.Google Scholar
  123. Vacelet, J., Vaseur, P. &Levi, C. (1976): Spongiaires de la pente externe des récifs corallines de Tuléar (sud-ouest de Madagascar).—Mem. Mus. natn. Hist. nat. (n.ser. A),49, 1–116.Google Scholar
  124. Veron, J.E.N. (1995): Corals in Space and Time.—321 p., Ithaca (Cornell Univ. Press).Google Scholar
  125. Weiner, S., Traub, W. &Lowenstam, H.A. (1983): Organic matrix in calcified exoskeletons.—In:Westbroek, P. &de Jong, E.W. (eds.): Biomineralization and Biological Metal Accumulation.—pp. 205–224, Amsterdam, (Reidel).Google Scholar
  126. Weissenfels, N. (1989): Biologie und mikroskopische Anatomie der Süßwasserschwämme (Spongillidae).— 110 p. Stuttgart (Fischer).Google Scholar
  127. Weissenfels, N. &Landschoff, H.-W. (1977): Bau und Funktion des SüßwasserschwammesEphydatia fluviatilis L. (Porifera). VI. Das Individualitätsproblem.—Zoomorph.,92, 49–63.CrossRefGoogle Scholar
  128. Westbroek, P., Buddemeier, B., Coleman, M., Kok, D.J., Fautin, D. &Stal, L. (1994): Strategies for the study of climate forcing by calcification.—Bull. Inst. Ocean. Monaco, num. Spécial13, 37–60.Google Scholar
  129. Wilkinson, C.R. (1978a): Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges.—Mar. Biol.,49, 161–167.CrossRefGoogle Scholar
  130. — (1978b): Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations.—Mar. Biol.,49, 169–176.CrossRefGoogle Scholar
  131. — (1978c): Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges.—Mar. Biol.,49, 177–185.CrossRefGoogle Scholar
  132. — (1984): Immunological evidence for the Precambrian origin of bacterial symbioses in marine sponges.—Proc. R. Soc. London B220, 509–517.CrossRefGoogle Scholar
  133. Wilkinson, C.R. &Fay, P. (1979): Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria.—Nature,279, 527–529.CrossRefGoogle Scholar
  134. Wilkinson, C.R. &Garrone, R. (1980): Nutrition of marine sponges. Involvement of symbiotic bacteria in the uptake of dissolved carbon.— In:Smith, D.C. &Tiffon, Y. (eds.): Nutrition in Lower Metazoa.— pp. 157–161. Oxford (Pergamon).Google Scholar
  135. Wilkinson, C.R., Nowak, M., Austin, B. &Colwell, R.R. (1981): Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef Sponges.—Microb. Ecol.,7, 13–21.CrossRefGoogle Scholar
  136. Wilkinson, C.R., Garrone, R. &Vacelet, J. (1984): Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence.—Proc. Roy. Soc. London, B220, 519–528.CrossRefGoogle Scholar
  137. Willenz, Ph. &Hartman, W.D. (1985): Calcification rate ofCeratoporella nicholsoni (Porifera: Sclerospongiae): An in situ study with calcein.—Proceedings 5th International Coral Reef Congress, Tahiti 1985,5, 113–118.Google Scholar
  138. — (1989): Micromorphology and ultrastructure of Caribbean sclerosponges 1.Ceratoporellanicholsoni andStromatospongia norae (Ceratoporellidae: Porifera).—Mar. Biol.,103, 387–401.CrossRefGoogle Scholar
  139. Willenz, Ph. &Pomponi S.A. (1996): A new deep sea coralline sponge from Turks and Caicos Islands:Willardia caicosensis gen. et. sp. nov. (Demospongia: Hadromerida).—Bull. Inst. Royal Sci. Nat. Belgique, Biologie,66, 205–218.Google Scholar
  140. Williams, R.J.P. (1989): The functional form of biominerals.— In:Mann, S., Webb, J. &Williams, R.J.P. (eds.): Biomineralization.—pp. 1–34, Weinheim (VCH).Google Scholar
  141. Williams, D.H. &Faulkner, D.J. (1996): N-methylated ageliferins from the spongeAstrosclera willeyana from Pohnpei.— Tetrahedron,52/15, 5381–5390.CrossRefGoogle Scholar
  142. Wood, R. (1987): Biology and revised systematics of some late Mesozoic stromatoporoids.—Special Papers in Paleontology,37, 1–89.Google Scholar
  143. Wood, R. (1991): Non spicular biomineralization in calcified demosponges.—In:Reitner, J. &Keupp, H. (eds.): Fossil and Recent Sponges.—322–340, Berlin (Springer).Google Scholar
  144. Wörheide, G. &Reitner, J. (1996): ‘Living fossil’ sphinctozoan coralline sponge colonies in shallow water caves of the Osprey Reef (Coral Sea) and the Astrolabe Reefs (Fiji Islands). —Göttinger Arb. Geol. Paläont. Sb2, 145–148.Google Scholar
  145. Wörheide, G., Reitner, J. & Gautret, P. (1996): Biocalcification processes in three coralline sponges from the Lizard Island Section (Great Barrier Reef, Australia): the stromatoporoidAstrosclera, the chaetetidSpirastrella (Acanthochaetetes), and the sphinctozoidVaceletia (Demospongiae).—In:Reitner, J., Neuweiler, F. & Gunkel, F. (eds.): Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research Reports.—Göttinger Arb. Geol. Paläont., Sb2: 149–153.Google Scholar
  146. Wörheide, G., Gautret, P., Reitner, J., Böhm, F., Joachimski, M.M., Thiel, V., Michaelis, W. &Massault, M. (1997a): Basal skeletal formation, role and preservation of intracrystalline organic matrices, and isotopic record in the coralline spongeAstrosclera willeyanaLister 1900.—Bol. R. Soc. Esp. Hist. Nat. (Sec. Geol.)91/1–4, 355–374.Google Scholar
  147. Wörheide, G., Reitner, J. &Gautret, P. (1997b): Comparison of biocalcification processes in the two coralline demospongesAstrosclera willeyanaLister and‘Acanthochaetetes’ wellsiHartman & Goreau.—Proc. 8th Int. Coral Reef Sym.,2, 1427–1432.Google Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1998

Authors and Affiliations

  • Gert Wörheide
    • 1
  1. 1.Institut und Museum für Geologie und PaläontologieUniversität GöttingenGöttingen
  2. 2.Marine Biology Lab., Queensland MuseumSouth BrisbaneAustralia

Personalised recommendations