, Volume 29, Issue 6, pp 397–403 | Cite as

Effects of soybean lipoxygenase-1 on phosphatidylcholines containing furan fatty acids

  • Andreas Batna
  • Gerhard Spiteller


Naturally occurring tetraalkylsubstituted furan fatty acids (F-acids) were tested as potential substrates for soybean lipoxygenase-1. For this purpose, F-acid methyl ester and phosphatidylcholines containing F-acids at thesn-2 position of the glycerol residue wer incubated with the enzyme. Oxidation of F-acids only occurs in the presence of linoleic acid as co-substrate. Linoleic acid is converted by lipoxygenase to the corresponding hydroperoxide that oxidizes the F-acid, probably in a radical reaction, to form an unstable dioxoene compound. This intermediate the forms, dependent on pH, unsaturated furanoid acids or isomers with cyclopentenolone structure that can be detected by gas chromatography/mass spectrometry (GC/MS). F-acids located at thesn-2 position of a synthetic phosphadidylcholine (PC), containing linoleic acid in thesn-1 position, are co-oxidized to a greater extent by incubation with soybean lipoxygenase-1 than are F-acids bound to PC with myristic acid in thesn-1 position when subjected to the enzyme in the presence of a great excess of linoleic acid. The results suggest that F-acids may play a strategic role in antioxidative processes in plant cells.


Linoleic Acid Furan Peroxyl Radical Furan Ring Nuclear Magnetic Reso 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





N-ethyl-N′--(3-dimethylaminopropyl)carbodiimide hydrochloride


furan fatty acid(s)


flame-ionization detector


gas chromatography


liquid secondary ion mass spectrometry


soybean lipoxygenase-1


mass spectrometry




nuclear magnetic resonance








thin-layer chromatography


tris(hydroxymethyl)amino-methane hydrochloride


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glass, R.L., Krick, T.P., and Eckhardt, A.E. (1974)Lipids 9, 1004–1008.PubMedCrossRefGoogle Scholar
  2. 2.
    Glass, R.L., Krick, T.P., Sand, D.M., Rahn, C.H., and Schlenk, H. (1975)Lipids 10, 695–702.PubMedCrossRefGoogle Scholar
  3. 3.
    Scrimgeour, C.M. (1977)J. Am. Oil Chem. Soc. 54, 210–211.PubMedGoogle Scholar
  4. 4.
    Gunstone, F.D., and Wijesundera, R.C. (1978)J. Sci. Food Agric. 29, 28–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Ishii, K., Okajima, H., Koyamatsu, T., Okada, Y., and Watanabe, H. (1988)Lipids 23, 694–700.CrossRefGoogle Scholar
  6. 6.
    Ota, T., and Takagi, T. (1991)Nippon Suisan Gakkaishi 57, 1565–1571.Google Scholar
  7. 7.
    Hasma, H., and Subramaniam, A. (1978)Lipids 13, 905–907.CrossRefGoogle Scholar
  8. 8.
    Guth, H., and Grosch, W. (1991)Fat Sci. Technol. 93, 249–255.Google Scholar
  9. 9.
    Hannemann, K., Puchta, V., Simon, E., Ziegler, H., Ziegler, G., and Spiteller, G. (1989)Lipids 24, 296–298.PubMedCrossRefGoogle Scholar
  10. 10.
    Sand, D.M., Glass, R.L., Olson, D.L., Pike, H.M., and Shlenk, H. (1984)Biochem. Biophys. Acta 793, 429–434.PubMedGoogle Scholar
  11. 11.
    Batna, A., Scheinkönig, J., and Spiteller, G. (1993)Biochim. Biophys. Acta 1166, 171–176.PubMedGoogle Scholar
  12. 12.
    Scheinkönig, J., and Spiteller, G. (1993)Liebigs Ann. Chem., 251–253.Google Scholar
  13. 13.
    Batna, A., and Spiteller, G. (1993)Phytochemistry 32, 311–315.CrossRefGoogle Scholar
  14. 14.
    Sand, D.M., Schlenk, H., Thoma, H., and Spiteller, G. (1983)Biochim. Biophys. Acta 751, 455–461.PubMedGoogle Scholar
  15. 15.
    Schödel, R., Dietel, P., and Spiteller, G. (1986)Liebigs Ann. Chem., 127–131.Google Scholar
  16. 16.
    Stansby, M.E., Schlenk, H., and Gruger, Jr. E.H. (1990) inFish Oils in Nutrition (Stansby, M.E., ed.) pp. 13–39, Van Nostrand Reinhold, New York.Google Scholar
  17. 17.
    Lindup, W.E., Henderson, S.J., and Barker, C.E. (1991) inPlasma Binding of Drugs and Its Consequences (Belpaire, F., Bogaert, M., Tilliment, J.P., and Verbeeck, R., eds.) pp. 103–120, Academic Press, Ghent.Google Scholar
  18. 18.
    Ishii K., Okajima, H., Okada, Y., and Watanabe, H. (1988)J. Biochem. 103, 836–839.PubMedGoogle Scholar
  19. 19.
    Bergström, S. (1967)Science 157, 382–394.PubMedCrossRefGoogle Scholar
  20. 20.
    Hamberg, M., Svensson, J., and Samuelsson, B. (1975)Proc. Natl. Acad. Sci. USA 72, 2994–2998.PubMedCrossRefGoogle Scholar
  21. 21.
    Serhan, C.N., Hamberg, M., and Samuelsson, B. (1984)Proc. Natl. Acad. Sci. USA 81, 5335–5339.PubMedCrossRefGoogle Scholar
  22. 22.
    Zimmerman, D.C., and Feng, P. (1978)Lipids 13, 313–316.CrossRefGoogle Scholar
  23. 23.
    Vick, B.A., and Zimmerman, D.C. (1987) inThe Biochemistry of Plants: A Comprehensive Treatise (Stumpf, P.K., ed.), Vol. 9, pp. 67–90, Academic Press, Orlando.Google Scholar
  24. 24.
    Creelman, R.A., Tierney, M.L., and Mullet, J.E. (1992)Proc. Natl. Acad. Sci. USA 89, 4938–4941.PubMedCrossRefGoogle Scholar
  25. 25.
    Buchta, E., and Fuchs, F. (1962)Leibigs Ann. Chem. 655, 81–85.Google Scholar
  26. 26.
    Lie Ken Jie, M.S.F., and Sinha, S. (1981)Chem. Phys. Lipids 28, 99–109.CrossRefGoogle Scholar
  27. 27.
    Boyer, R.F., Lindstrom, C.G., Darby, B., and Hylarides, M. (1975)Tetrahedron Lett. 47, 4111–4114.CrossRefGoogle Scholar
  28. 28.
    Takayama, K., Noguchi T., Nakano, M., and Migita, T. (1977)Biochem. Biophys. Res. Commun. 75, 1052–1058.PubMedCrossRefGoogle Scholar
  29. 29.
    Boyer, R.F., Litts, D., Kostishak, J., Wijesundera, R.C., and Gunstone, F.D. (1979)Chem. Phys. Lipids 25, 237–246.PubMedCrossRefGoogle Scholar
  30. 30.
    Okada, Y., Okajima, H., Terauchi, M., Konishi, H., Liu, I., and Watanabe, H. (1990)Yakugaku Zasshi 110, 665–672.PubMedGoogle Scholar
  31. 31.
    Schödel, R., and Spiteller, G. (1985)Helv. Chim. Acta 68, 1624–1634.CrossRefGoogle Scholar
  32. 32.
    Schödel, R., and Spiteller, G. (1987)Liebigs Ann. Chem., 459–462.Google Scholar
  33. 33.
    Jandke, J., Schmidt, J., and Spiteller, G. (1988)Liebigs Ann. Chem., 29–34.Google Scholar
  34. 34.
    Zabolotsky, D.A., Ludwig, P., Kühn, H., Schewe, T., and Myagkova, G.I. (1992)Biokhimiya (Moskow) 57, 46–54.Google Scholar
  35. 35.
    Batna, A., and Spiteller, G. (1994)Chem. Phys. Lipids, in press.Google Scholar
  36. 36.
    Rahn, C.H., and Sand, D.M., Wedmid, Y., Schlenk, H., Krick, T.P., and Glass, R.L. (1979)J. Org. Chem. 44, 3420–3424.CrossRefGoogle Scholar
  37. 37.
    Fodor, G., Fumeaux, J.P., and Sankaran, V. (1972)Synthesis, 464–472.Google Scholar
  38. 38.
    Elix, J.A., and Sargent, M.V. (1968)J. Chem. Soc. C., 595–596.Google Scholar
  39. 39.
    Karlsson, K.-A. (1968)Acta Chem. Scand. 22, 3050–3052.CrossRefGoogle Scholar
  40. 40.
    Mena, P.L., and Djerassi, C. (1985)Chem. Phys. Lipids 37, 257–270.PubMedCrossRefGoogle Scholar
  41. 41.
    Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.PubMedGoogle Scholar
  42. 42.
    Beiss, U. (1964)J. Chromatogr. 13, 104–110.PubMedCrossRefGoogle Scholar
  43. 43.
    Christie, W.W. (1982)Lipid Analysis, 2nd edn., pp. 22–23, Pergamon Press, Oxford.Google Scholar
  44. 44.
    Folch, J., Lees, M., and Stanley G.M.S. (1957)J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  45. 45.
    Christie, W.W. (1982)Lipid Analysis, 2nd edn., pp. 53–55. Pergamon Press, Oxford.Google Scholar
  46. 46.
    Kováts, E. (1958)Helv. Chim. Acta 41, 1915–1932.CrossRefGoogle Scholar
  47. 47.
    Gardner, H.W. (1989)Free Radic. Biol. Med. 7, 65–86.PubMedCrossRefGoogle Scholar
  48. 48.
    Verhue, W.M., and Francke, A. (1972)Biochim. Biophys. Acta 285, 43–53.Google Scholar
  49. 49.
    Eskola, J., and Laakso, S. (1983)Biochim. Biophys. Acta 751, 305–311.Google Scholar
  50. 50.
    Brash, A.R., Ingram, C.D., and Harris, T.M. (1987)Biochemistry 26, 5465–5471.PubMedCrossRefGoogle Scholar
  51. 51.
    Okada, Y., Okajima, H., Konishi, H., Terauchi, M., Ishii, K. Liu, I., and Watanabe, H. (1990)J. Am. Oil Chem. Soc. 67, 858–862.Google Scholar
  52. 52.
    Ishii, K., Okajima, H., Okada, Y., and Watanabe, H. (1989)Chem. Pharm. Bull. 37, 1396–1398.Google Scholar
  53. 53.
    Gorst-Allman, C.P., Puchta, V., and Spiteller, G. (1988)Lipids 23, 1032–1036.PubMedCrossRefGoogle Scholar
  54. 54.
    Scheinkönig, J., and Spiteller, G. (1993)Liebigs Ann. Chem., 121–124.Google Scholar
  55. 55.
    Galliard, T. (1970)Phytochemistry 9, 1725–1734.CrossRefGoogle Scholar
  56. 56.
    Vliegenthart, J.F.G., and Veldink, G.A. (1980) inAutoxidation in Food and Biological Systems (Simic, M.G., and Karel, M., eds.) pp. 529–540, Plenum Press, New York.Google Scholar
  57. 57.
    Muto, T., Tanaka, J., Miura, T., and Kimura, M. (1982)Chem. Pharm. Bull. 30, 3172–3177.Google Scholar
  58. 58.
    Wilcox, X.Y., and Marnett, L.J. (1993)Chem. Res. Toxicol. 6, 413–416.PubMedCrossRefGoogle Scholar
  59. 59.
    Pryor, W.A. (1986)Ann. Rev. Physiol. 48, 657–667.CrossRefGoogle Scholar
  60. 60.
    Marnett, L.J., Bienkowski, M.J., and Pagels, W.R. (1979)J. Biol. Chem. 254, 5077–5082.PubMedGoogle Scholar
  61. 61.
    Chamulitrat, W., and Mason, R.P. (1989)J. Biol. Chem. 264, 20968–20973.PubMedGoogle Scholar
  62. 62.
    Viswanathan, T.S., and Cushley, R.J. (1981)J. Biol. Chem. 256, 7155–7160.PubMedGoogle Scholar
  63. 63.
    Conant, J.B., and Lutz, R.E. (1923)J. Am. Chem. Soc. 45, 1303–1307.CrossRefGoogle Scholar
  64. 64.
    Pasto, D.J., Duncan, J.A., and Silversmith, E.F. (1974)J. Chem. Educ. 51, 277–279.CrossRefGoogle Scholar
  65. 65.
    Graff, G., Gellerman, J.L., Sand, D.M., and Schlenk, H. (1984)Biochim. Biophys. Acta 799, 143–150.PubMedGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1994

Authors and Affiliations

  • Andreas Batna
    • 1
  • Gerhard Spiteller
    • 1
  1. 1.Lehrstuhl für Organische Chemie IUniversität BayreuthBayreuthGermany

Personalised recommendations