Advertisement

Facies

, 7:1 | Cite as

Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken

  • Klaus Bandel
Article

Zusammenfassung

Die Arbeit behandelt die frühontogenetische Mollusken-Entwicklung der Schale und der diese bildenden Epithelien. Speziell werden Archaeogastropoden, Ammoniten und Neritaceen behandelt und mit einigen ausgewählten höheren Gastropoden verglichen, Archaeogastropoden, Neritaceen und höhere Gastropoden sind paläontologisch gut trennbare Gruppen, wenn die Bildung und Morphologie der frühontogenetischen Schalen verglichen werden. Eine Verbindung zwischen Archaeogastropoden und Ammoniten zeigt sich in der Art der Mineralisierung der organischen Primärschälchen. Cephalopoden sind generell eine ziemlich einheitliche Gruppe der Mollusken, deren Vorfahren den Vorfahren der Archaeogastropoden nahe verwandt waren. Neritaceen und höhere Schnecken verbindet die innere Befruchtung sowie der Besitz einer echten Larve, die den Archaeogastropoden wie auch den Cephalopoden fehlt. Die Ergebnisse werden in einem Schema des Entwicklungsablaufes in der Ontogenese dargestellt und zur Phylogenese des Molluskenstammes in Bezug gebracht. Hierzu werden auch einige Entwicklungsabläufe bei Käferschnecken, Muscheln und Scaphopoden miteinbezogen. Es erweist sich, daß einige in der Systematik bisher noch bewertete Eigenschaften und Merkmale nur sehr mit Vorsicht genutzt werden dürfen, während andere bisher wenig beachtete Kriterien mehr Aussagekraft besitzen als bisher vermutet. Die Bildung der Schalendrüse erweist sich als die zentrale Erfindung der Mollusken, die vermutlich während des oberen Kambriums die Conchifera entstehen ließ. Mit vielen Beispielen wird belegt, daß innerhalb aller behandelten Molluskengruppen eine Ausdeutung fossiler Schalenreste nur dann zu sinnvollen Ergebnissen führt, wenn die Bildungsweise der Schale bei rezenten Verwandten gut untersucht ist. Umgekehrt zeigt es sich, daß Modelle der Evolution der Mollusken, die nur auf Rezentbefunden basieren, in der Regel wenig Ähnlichkeit mit dem tatsächlichen Ablauf der Geschehnisse aufweisen.

Schlüsselwörter

Mollusken Ontogenie Phylogenie Systematik Evolution Biomineralisation 

Morphology and formation of the early ontogenetic shells of conchiferan mollusks

Summary

The development of the early ontogenetic shell and the epithelia forming it is traced in archaeogastropods, ammonites, and neritaceans and is compared with that of some selected higher gastropods. Results are integrated into a scheme of evolution of molluscs. Here developmental stages of ontogeny are related to the evolution of mollusc classes, especially those of the conchifers. To do so in a more general way polyplacophoran, bivalve and scaphopod ontogenies are described with few examples.

The archaeogastropods form their primary shell in a way that is different from all other gastropod orders (Chapter 2). Here a bilaterally symmetrical purely organic shell is mechanically deformed by force of the soft body from the inside and the outside. During the transition from the free swimming stage to the crawling young the shell is thus pressed into trochospiral shape and mineralized rapidly afterwards by growth of aragonitic needles in the organic shell. In contrast to current theories about gastropod body torsion the coiling of the shell of archaeogastropods is independent from twisting of the soft parts inside it. This is demonstrated by the cuplike patellacean archaeogastropods. Here a bilaterally symmetrical shell can be produced by a normally torted animal. Similar independence of shell and body torsion can also be observed in quite different and unrelated gastropod groups outside of the archaeogastropods. Torsion has nothing to do with the ability of the embryo to withdraw into its shell, but is the result of differential growth of epithelia, mainly those of the visceral mass. Due to it foot and mantle cavity are brought into the right position needed in benthic life.

The early ontogentic shell of fissurellacean archaeogastropods shows several features of the same systematic value as those used in taxonomy but usually suggesting a different system. The formation of a slit occurs late during ontogeny and place of occurrence as well as absence and presence should not be overemphazised in systematics of molluscs. Shell pores also occur in these gastropods and thus are not restricted to bivalves and polyplacophores. The primary shell of the archaeogastropod can be a tool to differenciate these from all other gastropods including the Neritacea. An account of different morphologies and sculptures of the primary shell is provided.

Secretion and mineralization of the early ontogenetic shell of two Mesozoic ammonites are described and reconstructed in detail (Chapter 3). The absence of growth lines indicates the formation of the whole embryonic conch in uninterrupted contact to the gland cells (periostracum cells). After detachment from the latter the whole outer shell became mineralized, while the inner conch walls remained of organic structure. These and the whole interior of the conch were covered by mineral layers afterwards. Tissue shell connection migrated from the inner surface of the inner lip to the surface of the first septum and from there to the internal side of the third chamber during formation of the siphuncular system. The construction of the first septum preceeded that of the original siphuncular rod, while following septa were produced in connection to each segment of the siphuncle. Results are compared with some of the more modern interpretations of ammonite embryonic shell construction and function. A comparison with the development of the embryonic shell of recentSepia, Spirula, andNautilus and some fossil cephalopods provides two general trends in cephalopods: First, that the shape and mode of mineralization of the primary shell is connected to egg size and not to systematic placement, and second, that recent and fossil cephalopods alike lack a true larval stage and have extremely yolk rich eggs if compared with most other molluscs. Shape, size and structure of embryonic shells of fossil cephalopods allow the reconstruction of the course early ontogeny took. Shape size and structure of the scars formed by the attachment of the body to the shell makes it possible to differentiate endocochleates from ectocochleates. The data presented indicate that original cephalopods and primary archaeogastropods had a common ancestor, living in the Upper Cambrian, with direct development, a feature still present in both groups. First cephalopods can be reconstructed a bit more in detail and with more functional reason than found in literature up to now (Chapter 3.6.3).

The Neritacea (Chapter 4) are an independent group of gastropods, neither archaeogastropod, nor of meso-neogastropod relation. This is shown in their anatomy in their embryonic development, and in their shell morphology. The latter is analyzed in detail and will allow in the future to differentiate fossil nertiaceans from other molluscs. The shell detaches from the cells of the mantle during early ontogeny, before the visceral mass is covered by it. Early mineralization and growth lines as well as growth around the slightly torted body characterizes the embryonic shell. Its mode of coiling differs from that of the strongly convolute larval shell. These characters separate neritaceans with free larvae from all other gastropods, but when the larval phase occurs within the egg capsule a separation from higher gastropods with similar development is probelmatic.

Within Neritacea as well as within other unrelated gastropod families and orders limpet-like species are found (Chapter 4.5). The change from the coiled early ontogenetic shell to the cup-like adult shell goes along with a rearrangement of tissue shell attachment and a loss of the operculum. The animal no longer withdraws into its shell, but rather pulls its shell down onto the substrate, when in danger. The result is an externally and internally similar shell which also may become extremely similar to shells of untorted molluscs, like recent and fossil monoplacophores. It is documented that neither morphology of the internal mould, nor muscle scars, or apex position provide sound systematic evidence. The later can be gathered only from the early ontogenetic shell, but here restrictions must be taken into account.

The course of the embryonic development of higher gastropods (Chapter 5.1) is quite variable because a true larval phase is developed. During this phase plankton is eaten or this normal food of the free larva is substituted by nutrients provided within the egg capsule. The mode of development of a free larva provides systematic information expressed by the size, shape and sculpture of the shell. Where larval food is present within the egg capsule, embryonic development is adapted to this, and systematic information is lost. A number of cases shows how liquid yolk, yolk grains, and nurse eggs are taken by embryos at different stages of development. Distance from marine way of life masks the indirect course of development strongly. The fresh-water and land snails in addition, provide a good model for the formation of internal shells, that can be applied to the cephalopods as well. Here three types of tissue, originating in the shell gland and characterizing the mantle, are produced simultaneously. The muscle mantle can close over the shell gland before shell formation, thus making the shell an internal one.

Differences present in the ontogeny of molluscs makes it possible to gather information regarding the course in which evolution proceeded (Chapter 5.2). Polyplacophores branched off prior to the invention of an embryonic shell gland. Bivalves, scaphopods, archaeogastropods, cephalopods and higher gastropods developed their specific way of early shell formation independently from untorted bilaterally symmetrical common ancestors, probably at the end of the Cambrian. The protostome or deuterostome development, the type of swimming larva and the mode and way of feeding are variable features and of little use for reconstructing the phylogeny. Direct development with a adult organs appearing without transitional organs is the original type, present in archaeogastropods and cephalopods. Larvae having to metamorphose transitional organs into adult ones and thus carrying out indirect development characterize all higher gastropods and have developed independently within the bivalves.

Literatur

  1. ABBOTT, R.T. (1974): American Seashells.—663 S., New York (Van Nostrand)Google Scholar
  2. ANDERSON, D.T. (1965): The reproduction and early life histories of the gastropodsNotoacmaea petterdi, Chiazacmaea flammea, andPatelloidea alticostata.—Proc. Linn. Soc. New South Wales,90, 242–251, 17 Abb.Google Scholar
  3. ANDREWS, E.A. (1936): Spherulites as specific characters in certain gastropods.—Trans. Amer. Microsc. Soc.,56, 237–242, 3 Abb., LancasterCrossRefGoogle Scholar
  4. AMIO, M. (1963): A comparative embryology of marine gastropods, with ecological considerations.— J. Shimonoseki Coll. Fish.,12/(2,3), 229–353, 52 Abb., ShimonosekiGoogle Scholar
  5. ARKELL, W.J. (1957): Introduction to Mesozoic Ammonoidea.—Tratise on Invertebrate Paleontology, part L, Mollusca,4, L81-L129, Lawrence (Univ. Kansas Press)Google Scholar
  6. BABIO, C.R. & THIRIOT-QUIEVREUX, C. (1975): Trochidae, Skeneidae et Skeneopsidae (Mollusca, Prosobranchia) de la region de Roscoff.—Cahiers Biol. Marine,16, 521–530, 4 Taf.Google Scholar
  7. BANDEL, K. (1974): Fecal pellets of Amphineura and Prosobranchia (Mollusca) from the Caribbean Coast of Columbia (South America).—Senckenbergiana marit.,6, 1–31, 14 Abb., FrankfurtGoogle Scholar
  8. — (1975a): Embryonalgehäuse karibischer Meso- und Neogastropoden (Mollusca).—Abh. Akad. Wiss. Lit., math.-naturwiss. Kl.,1975/1, 1–133, 21 Taf., 16 Abb., WiesbadenGoogle Scholar
  9. — (1975b): Embryonale und larvale Schale einiger Prosobranchier (Gastropoda, Mollusca) der Oosterschelde (Nordsee).—Hydrobiol. Bull.,9, 3–22, 26 Figs., AmsterdamCrossRefGoogle Scholar
  10. — (1975c): Das Embryonalgehäuse mariner Prosobranchier der Region von Banyuls-Sur-Mer. 1. Teil.—Vie et Milieu,25, 83–118, 6 Taf., Banyuls-Sur-MerGoogle Scholar
  11. — (1975d): Entwicklung der Schale im Lebensablauf zweier Gastropodenarten:Buccinum undatum undXancus angulatus (Prosobranchier, Neogastropoda).—Biomineralisation,8, 67–91, 17. Abb., 8 Taf., StuttgartGoogle Scholar
  12. — (1976a): Morphologie der Gelege und ökologische Beobachtungen an Muriciden (Gastropoda) aus der südlichen Karibischen See.—Verh. Nat. Ges. Basel,85, 1–32, 20 Abb., BaselGoogle Scholar
  13. — (1976b): Morphologie der Gelege und ökologische Beobachtungen an Buccinaceen (Gastropoda) aus der südlichen Karibischen See.—Bonner Zool. Beitr.,27, 98–133, 19 Abb., BonnGoogle Scholar
  14. — (1976c): Die Gelege karibischer Vertreter aus den Überfamilien Strombacea, Naticacea und Tonnacea (Mesogastropoden, Mollusca).—Mitt. Inst. Colombo-Aleman Invest. Cient. Santa Marta (Kolumbien),8, 105–139, 13 Abb., GiessenGoogle Scholar
  15. — (1976d): Observation on spawn, embryonic development and ecology of some Caribbean higher Neogastropoda (Mollusca),—Veliger,19, 176–193, 17 Abb., BerkeleyGoogle Scholar
  16. — (1977a): Übergänge von der Perlmutter-Schicht zu prismatischen Schichttypen bei Mollusken.—Biomineralisation,9, 28–47, 2 Abb., 5 Taf. StuttgartGoogle Scholar
  17. — (1977b): Die Herausbildung der Schraubenschicht der Pteropoden.—Biomineralisation,9, 73–85, 4 Abb., 3 Taf., StuttgartGoogle Scholar
  18. — (1979a): Übergänge von einfacheren Strukturtypen zur Kreuzlamellenstruktur bei Gastropodenschalen. —Biomineralisation,10, 9–37, 8 Taf., 5 Abb., StuttgartGoogle Scholar
  19. — (1979b): The nacreous layer in the shell of the gastropod-family Seguenziidae and its taxonomic significance.—Biomineralisation,10, 49–61, 3 Taf., StuttgartGoogle Scholar
  20. — (1981a): The structure and formation of the siphuncular tube ofQuenstedtoceras compared with that ofNautilus (Cephalopoda).—N. Jb. Geol. Paläont. Abh.,161/2, 153–171, 9 Abb., StuttgartGoogle Scholar
  21. — (1981b): Struktur der Molluskenschale im Hinblick auf ihre Funktion.—Paläont. Kursbücher,1, 25–48, 17 Abb., München (Paläont. Ges.)Google Scholar
  22. BANDEL, K. & BOLETZKY, S.V. (1979): A comparative study of the structure, development and morphological relationships of chambered cephalopod shells.—The Veliger 21, 313–354, 99 Abb., BerkeleyGoogle Scholar
  23. BANDEL, K. & CHRISTIAENS, J.: Fissurellacea and Patellacea from the Caribbean Sea (Columbia). —In VorbereitungGoogle Scholar
  24. BANDEL, K. & HEMLEBEN, C. (1975): Anorganisches Kristallwachstum bei lebenden Mollusken.— Paläont. Z.,49, 298–320, 38 Abb., StuttgartGoogle Scholar
  25. BANDEL, K., LANDMAN, N. & WAAGE, K.M. (1981): Micro-ornament on early whorls of Mesozoic ammonites: Implications for early ontogeny.—J. Paleont.56, 386–391, 2 Abb., TulsaGoogle Scholar
  26. BATTEN, R.L. (1975): The Scissurellidae- are they neotenously derived Fissurellids? (Archeogastropoda).— Amer. Mus. Novitates,2567, 1–29, 37 Abb., New YorkGoogle Scholar
  27. BATTEN, R.L. & DUMONT, M.P. (1976): Shell ultrastructure of the Atlantidae (Heteropoda, Mesogastropoda)Oxygurus andProtatlanta, with comments onAtlanta inclinata.—Bull. Amer. Mus. Nat. Hist.,157/267–310, 60 Abb., New YorkGoogle Scholar
  28. BATTEN, R.L., ROLLINS, H.B. & GOULD, S.J. (1967): Comments on “The adaptive significance of gastropod torsion.—Evolution,21, 405–406, LawrenceCrossRefGoogle Scholar
  29. BIRKELUND, T. (1967): Submicroscopic structures in early growth-stages of Maastrichtian ammonites (Saghalinites andScaphites).—Medd. Dansk Geol. Forening.,17, 95–101, Taf. 1–4, KopenhagenGoogle Scholar
  30. BIRKELUND, T. & HANSEN, H.J. (1968): Early shell growth and structur of the septa and the siphuncular tube in some Maastrichtian ammonites.—Medd. fra Dansk Geol. Forening. 18, 71–78, Taf. 1–4, KopenhagenGoogle Scholar
  31. — (1974): Shell ultrastructure of some Maastrichtian Ammonoidea and Coleoidea and their taxonomic implications.—Kong. Dansk. Vidensk. Sel. Biol. Skrift. 20, 1–34, 7 Abb., 16 Taf. KopenhagenGoogle Scholar
  32. BLIND, W. (1976): Die ontogenetische Entwicklung vonNautilus pompilius (LINNE).—Palaeontographica, Abt. A,153, 117–160, StuttgartGoogle Scholar
  33. BLOCHMANN, F. (1882): Über die Entwicklung derNeritina fluviatilis, Müll.—Z. wiss. Zool.,36, 125–174, 8 Taf., LeipzigGoogle Scholar
  34. BOETTGER C.R. (1955): Beiträge zur Systematik der Urmollusken (Amphineura).—Zool. Anz. Suppl., 19, 223–256, 5 Abb., LeipzigGoogle Scholar
  35. BOGGS, C.H. (1978): Development of HawaiianDiodora.—Hawaiian Shell News,26/10, 3–4, HonoluluGoogle Scholar
  36. BONAR, D.B. & HADFIELD, M.G. (1974): Metamorphosis of the marine gastropodPhestilla sibogae Bergh (Nudibranchia, Aeolidacea).—J. exp. Biol. Ecol., 16, 227–255, 18 Abb.CrossRefGoogle Scholar
  37. BOLETZKY, S.V. (1974): The “larvae” of Cephalopoda: A review.—Thalassis Jugosl.,10/1–2, 45–76, 13 Taf., ZagrebGoogle Scholar
  38. BONDESEN, P. (1940): Preliminary investigations into the development ofNeritina fluviatilis L. in brackish and fresh water.—Vidensk. Medd. Dansk. Nat. For.,104, 283–318, 5 Abb., KopenhagenGoogle Scholar
  39. BONIK, K., GRASSHOFF, M. & GUTMANN, W.F. (1976): Die Evolution der Tierkonstruktionen I–IV.—Natur und Museum,106/5,6,10, 129–143, 178–188, 303–316, FrankfurtGoogle Scholar
  40. — (1979a): Selektionszwänge in der Ontogenese—Die Entwicklung dotterreicher Eier.— Natur und Museum,109/8, 268–278, 6 Abb., FrankfurtGoogle Scholar
  41. BONIK, K., GRASSHOFF, M. & GUTMANN, W.F. (1979b): Die Evolution von Larven als Verbreitungsstadien bodenlebender Meerestiere.—Natur und Museum,109/3, 70–79, 6 Abb., FrankfurtGoogle Scholar
  42. — (1979c): Die Evolution der Zellteilung in den frühen Embryonalstadien.—Natur und Museum,109/2, 52–59, 4 Abb., FrankfurtGoogle Scholar
  43. BONIK, K., GRASSHOFF, M., GUTMANN, W.F. & KLEIN-RÖDDER R. (1977): Die Evolution der Tintenfische, ein Entwurf für das Schaumuseum.—Natur und Museum,107/8 244–250, 1 Abb., FrankfurtGoogle Scholar
  44. BOURNE, G. (1908): Contribution to the morphology of the group Neritacea of aspidobranch gastropods. I. The Neritidae.—Proc. Zool. Soc. London,43, 810–887, LondonGoogle Scholar
  45. BOUTAN, L. (1885): Recherches sur l'anatomie et le dévelopment de la Fissurelle.—Arch. Zool. Exp. Gén., sér. 23/4, 1–173, ParisGoogle Scholar
  46. BRANCO, W. (1880): Beiträge zur Entwicklungsgeschichte der fossilen Cephalopoden.—Palaeotographica,27, 12–81, StuttgartGoogle Scholar
  47. CARRIKER, M.R. & PALMER, R.E. (1979): Ultrastructural morphogenesis of prodissoconch and early dissoconch valves of the OysterCrassostrea virginica.—Proc. Nat. Shellfish. Assoc. 69, 103–128, 63 Abb., PhiladelphiaGoogle Scholar
  48. CONKLIN, E.G. (1897): The embryology ofCrepidula.—J. Morphol.,13, 1–226CrossRefGoogle Scholar
  49. COX, L.R.: General characteristics of Gastropoda.—Treatise on Invertebrate Paleontology, I (1), I84–I169, LawrenceGoogle Scholar
  50. CROFTS, D.R. (1929):Haliotis.—L.M.B.C. Mem. typ. Br. mar. Pl. Anim.,29, Liverpool (University Press)Google Scholar
  51. — (1937): The development ofHaliotis tuberculata, with special reference to the organogenesis during torsion.—Phil. Trans. Roy. Soc., B.,208, 219–268, LondonCrossRefGoogle Scholar
  52. — (1955): Muscle morphogenesis in primitive gastropods and its relation to torsion.— Proc. Zool. Soc. London,125, 711–750, LondonGoogle Scholar
  53. D'ASARO, C.N. (1966): The egg capsules, embryogenesis, and early organogenesis of a common oyster predator,Thais haemastoma floridana (Gastropoda, Prosobranchia).—Bull. Mar. Sci.,16, 884–914, 10 Abb., MiamiGoogle Scholar
  54. — (1969): The comparative embryogenesis and early organogenesis ofBurea corrugata Perry andDistorsio clathrata Lamarck (Gastropoda, Prosobranchia).—Malacologia,9, 349–389, 18 Abb., Ann ArborGoogle Scholar
  55. DAUPHIN, Y. (1975): Anatomie de la Protoconque et des tours initiaux deBeudanticeras beudanti (Brongniart) etDemocerae latidorsatum (Michelin).—Ann. Paléont.61, 3–16, 4 Abb., ParisGoogle Scholar
  56. — (1976): Microstructure des coquilles de Céphalopodes. I.Spirula spirula L. (Dibranchiata, Decapoda).—Bull. Mus. Nat. Hist. Nat., 3. ser.,382, 197–238, 23 Abb., ParisGoogle Scholar
  57. — (1977): Anatomie de la Protoconque et des tours initiaux deUhligella walleranti Jacob (Desmoceratidae, Ammonitina) Albien de Gourdon (Alpes-Maritimes).—Ann. Paléont.63, 77–83, ParisGoogle Scholar
  58. — (1979): Coquilles juvéniles de nautiles des îles Loyauté (Pacifique Sud).—Cahiers Indo-pacifique1/4, 447–460, 6 Abb., MontreuilGoogle Scholar
  59. DAUTERT, E. (1929): Die Bildung der Keimblätter beiPaludina.—Zool. Jb. (Anat.),50, 433–496, LeipzigGoogle Scholar
  60. DRUSHCHITS, V.V. & KHIAMI, N. (1969): Distinctive features in the early stages of ontogeny in certain early Cretaceous ammonites.—Misk. obshch. Ispytateley Prirody, Byull. Otdel. Geol.,2, 156–157, LeningradGoogle Scholar
  61. — (1970): Structure of the septa, protoconch walls and initial whorl in early Cretaceous ammonites.—Paleont. J.,1, 26–38, Falls ChurchGoogle Scholar
  62. DZIK, J. (1978): Larval development of hyolithids.—Lethaia,11, 293–299, 7 Abb., OsloGoogle Scholar
  63. — (1980): Ontogeny ofBactrotheca and related hyoliths.—Geol. Fören. Stockholm Förh., 102/3, 223–233, 8 Abb., StockholmGoogle Scholar
  64. ERBEN, H.K. (1962): Über den Prosipho, die Prosutur und die Ontogenie der Ammonoidea.— Paläont. Z.,36, 99–108, StuttgartGoogle Scholar
  65. — (1964): Die Evolution der ältesten Ammonoidea.—N. Jb. Geol. Paläont. Abh.,120, 107–212, StuttgartGoogle Scholar
  66. — (1966): Über den Ursprung der Ammonoidea.—Biol. Rev.,41, 641–658, 8 Abb.Google Scholar
  67. ERBEN, H.K. & FLAJS, G. (1975): Über die Cicatrix der Nautiloideen.—Mitt. Geol. Paläont. Inst. Univ. Hamburg,44, 59–68, 6 Taf., 2 Abb., HamburgGoogle Scholar
  68. ERBEN, H.K., FLAJS, G. & SIEHL, A. (1969): Die frühontogenetische Entwicklung der Schalenstruktur ectocochleater Cephalopoden.—Palaeontographica, A132, 154, StuttgartGoogle Scholar
  69. ERBEN, H.K. & REID, R.E.H. (1971): Ultrastructure of shell, origin of conellae and siphuncular membranes in an ammonite.—Biomineralisation,3, 22–31, 2 Taf., 1 Abb., StuttgartGoogle Scholar
  70. FIORONI, P. (1966): Zur Morphologie und Embryogenese des Darmtraktes und der transitorischen Organe bei Prosobranchiern (Mollusca, Gastropoda).—Rev. Suisse Zool.,73, 621–876, 113 Abb., GenfGoogle Scholar
  71. — (1967): Molluskenembryologie und allgemeine Entwicklungsgeschichte.—Verh. naturforsch. Ges. Basel,78, 283–307, BaselGoogle Scholar
  72. — (1970): Umwegige Entwicklung.—Naturwiss. Rundschau,23, 353–360, 13 Abb., 4 Taf., StuttgartGoogle Scholar
  73. — (1974): Die Sonderstellung der Tintenfische.—Naturwiss. Rundschau,27, 133–143, 11 Abb., StuttgartGoogle Scholar
  74. — (1979): Phylogenetische Abänderungen der Gastrula bei Mollusken. In SIEWING, R. (Ed.): Ontogenese und Phylogenese. Erlanger Symp. für Strukturanalyse und Evolutionsforsch., 1977, 82–100, 7 Abb., Hamburg-Berlin (Parey)Google Scholar
  75. FIORONI, P. & PORTMANN, A. (1968): Zur Morphogenese und der Larvalorgane vonFusus (Gastropoda, Prosobranchia).—Rev. Suisse Zool.,75, 833–882, 27 Abb., 5 Tab., GenfGoogle Scholar
  76. FIORONI, P. & SCHMEKEL, L. (1975): Entwicklung und Biotopabhängigkeit bei Gastropoden—ein entwicklungsgeschichtlicher Vergleich.—Forma et Functio,8, 209–252, 10 Abb., Pergamon PressGoogle Scholar
  77. FRETTER, V. (1965): Functional studies of the anatomy of some neritid prosobranchs.—J. Zool.,147, 46–74CrossRefGoogle Scholar
  78. — (1969): Aspects of metamorphosis in prosobranch gastropods.—Proc. Malac. Soc. London,38, 375–386, 3 Abb., LondonGoogle Scholar
  79. — (1972): Metamorphic changes in the velar musculature, head and shell of some prosobranch veligers.—J. mar. biol. Ass.,52, 161–177, PlymouthGoogle Scholar
  80. FRETTER, V. & GRAHAM, A. (1962): British prosobranch mollusks.—Royal Society, London, 1–755, LondonGoogle Scholar
  81. FRETTER, V. & MONTGOMERY, M.C. (1968): The treatment of food by prosobranch veligers.— J. mar. biol. Ass.,48, 499–520, 4 Abb., PlymouthGoogle Scholar
  82. FISCHER, F.P. (1980): Fine structure of the larval eye ofLepidochitona cinerea L.—Spixiana,3, 53–57, 6 Abb., MünchenGoogle Scholar
  83. FOURNIÉ, J. (1979): Etude des cellutes libres présentes à la surface interne de la coquille d'Agriolimax reticulatus (Müller), origine et rôle dans la mise en place de l'hypostracum.— Ann. Science Nat. Zool. Paris 13e série, Vol. 1, 169–185, 27 Abb., 1 Tab., ParisGoogle Scholar
  84. GARSTANG, W. (1929): The origin and evolution of larval forms.—Rep. Br. Ass. Advmt. Sci. 1928 (Glasgow), sect. D, 77–98, GlasgowGoogle Scholar
  85. GIESE, K. (1978): Zur Embryonalentwicklung vonBuccinum undatum L. (Gastropoda, Prosobranchia, Stenoglossa (Neogastropoda), Buccinacea).—Zool. Jb. Anat.,100, 65–117, 20 Abb., JenaGoogle Scholar
  86. GÖTTING, K.J. (1974): Malakozoologie.—1–320, Stuttgart (G. Fischer)Google Scholar
  87. — (1980): Argumente für die Deszendenz der Mollusken von metameren Antezedenten.—Zool. Jb. Anat.,103, 211–218, 2 Abb., JenaGoogle Scholar
  88. GRANDJEAN, F. (1910): Le siphon des ammonites et des bélemnites.—Bull. Soc. géol. France, sér. 4,10, 496–519, ParisGoogle Scholar
  89. GUTMANN, W.F. (1974): Die Evolution der Mollusken-Konstruktion: ein phylogenetisches Modell.—In: Schäfer, W. (Ed.): Aufsätze und Reden. Senckenberg. naturforsch. Ges.,25, 1–84, FrankfurtGoogle Scholar
  90. HAAS, W. (1972): Untersuchungen über die Mikro- und Ultrastruktur der Polyplacophorenschale.,— Biomineralisation,5, 1–52, 6 Abb., 18 Taf., StuttgartGoogle Scholar
  91. HAAS, W. & KRIESTEN, K. (1974): Studien über das Mantelepithel vonLepidochitona cinera (L) (Placophora).—Biomineralisation,7, 100–109, 11 Abb., StuttgartGoogle Scholar
  92. — (1978): Die Ästheten mit intrapigmentärem Schalenauge vonChiton marmoratus L.— Zoomorphol,90, 253–268, 15 Abb.CrossRefGoogle Scholar
  93. — (1982): Evolution of calcareous hardparts in primitive molluscs.—Malacologia,21, 403–418, 14 Abb., Ann ArborGoogle Scholar
  94. HAAS, W., KRIESTEN, K. & WATABE, N. (1979): Notes on the shell formation in the larvae of the Placophora (Mollusca).—Biomineralisation,10, 1–8, 13 Abb., StuttgartGoogle Scholar
  95. HAMADA, T., OBATA, I. & OKUTANI T. (1980):Nautilus macromphalus in captivity. —Tokai University Press, 1–80, TokioGoogle Scholar
  96. HATSCHEK, B. (1978): Studien über die Entwicklungsgeschichte der Anneliden.—Arb. Zool. Inst. Zool. Inst. Univ. Wien,1, 277–404, WienGoogle Scholar
  97. HESS, O. (1956): Die Entwicklung von Exogastrulakeimen bei dem Süßwasser ProsobranchierBithynia tentaculata.—Roux Archiv Entwicklungsmech.,148, 474–488, 9 Abb., BerlinCrossRefGoogle Scholar
  98. HOARE, R.D. & STURGEON, M.T. (1978): The Pennsylvanian gastropod generaCyclozyga andHeminthozyga and the classification of the Pseudozygopleuridae.—J. Paleont.,52, 850–858, 13 Abb., 2 Tab., TulsaGoogle Scholar
  99. HORNY, R.J. (1963):Archaeopraga, a new problematic genus of Monoplacophoran Mollusc from the Silurian of Bohemia.—J. Paleont.,37, 1071–1073, TulsaGoogle Scholar
  100. — (1965):Cyrolites Conrad, 1938 and its position among the Monoplacophora (Mollusca).— Sbornik Narodniho Mus. Racze,21, (B), 57–70, PragGoogle Scholar
  101. HYMAN, L.H. (1967): The Invertebrates. Vol. 6, 1–792, New York (McGraw Hill)Google Scholar
  102. IHERING, H. (1922): Phylogenie und Systematik der Mollusken.—Arch. Molluskenk.,1, 1–115, FrankfurtGoogle Scholar
  103. JEFFREYS, J.G. (1865): British Conchology. Vol. 3 393 S., London (Van Voorst)Google Scholar
  104. JELETZKY, J.A. (1966): Comparative morphology, phylogeny, and classification of fossil Coleoidea.—Univ. Kansas Paleont. Contr., Mollusca, art. 7, 1–162, 12 Abb., 25 Taf., LawrenceGoogle Scholar
  105. JORDAN, R. (1968): Zur Anatomie mesozoischer Ammoniten nach den Strukturelementen der Gehäuse-Innenwand.— Beih. geol. Jb.,77, 1–64, 10 Taf., 26 Abb., HannoverGoogle Scholar
  106. JUNG, P. (1975): Quarternary larval gastropods from Leg 15, Site 147, Deep Sea Drilling Project, Preliminary Report.—The Veliger,18, 109–126, 120 Abb., BerkeleyGoogle Scholar
  107. KAISER, P. & VOIGT, E. (1977): Über eine als Gastropodenlaich gedeutete Eiablage in einer Schale vonPseudopecten aus dem Lias von Salzgitter.—Paläont. Z.,51, 5–11, 2 Taf., StuttgartGoogle Scholar
  108. KNIGHT, J.B., COX, L.R., KEEN, A.M., BATTEN, R.L., YOCHELSON, E.L. & ROBERTSON, R. (1960): Archaeogastropoda.—Treatise on Invertebrate Paleontology, I, Mollusca (1), I169-I309, LawrecneGoogle Scholar
  109. KNIGHT, J.B. & YOCHELSON, E.L. (1960): Monoplacophora..—Treatise on Invertebrate Paleontology, i, Mollusca (1), i77-i83, LawrenceGoogle Scholar
  110. KNIPRATH, E. (1975): Das Wachstum des Mantels vonLymnaea stagnalis (Gastropoda).—Cytobiol.,10, 260–267, 6 Abb.Google Scholar
  111. — (1977): Zur Ontogenese des Schalenfeldes vonLymnaea stagnalis.—Roux. Arch.,181, 11–30, 7 Abb., BerlinCrossRefGoogle Scholar
  112. KWALEVSKY, M.A. (1883): Embryogénie duChiton polii Phil., avec quelques remarques sur le développement des autres Chitons.—Ann. Mus. Hist nat. Marseille,1/1–46, MarseilleGoogle Scholar
  113. KULICKI, C. (1974): Remarks on the embryogeny and postembryonal development of ammonites.— Acta Palaeont. Polonica,19, 201–224, Taf. 4–9, 8 Abb., WarszawaGoogle Scholar
  114. — (1975): Structure and mode of origin of the ammonite proseptum.—Acta Palaeont Polonica,20, 535–542, Taf., 38–39, 3 Abb., WarszawaGoogle Scholar
  115. KULICKI, C. (1979): The ammonite shell: Its structure, development and biological significance.— Palaeontologia Polonica,398, 97–142, Taf., 24–48, 10 Abb., WarszawaGoogle Scholar
  116. LACAZE-DUTHIERS, H., de, (1856–1857): Histoire de l'organisation et du développment du dentale.—Ann. Sci. nat., (Zool.),4/7, 171–255, ParisGoogle Scholar
  117. LALLI, C.M. & CONOVER, R.J. (1976): Microstructure of the veliger shell of gymnosomatous Pteropods (Gastropoda: Opisthobranchia).—The Veliger, 18/3, 237–240, BerkeleyGoogle Scholar
  118. LEBOUR, M.V. (1936): Notes on the eggs and larvae of some Plymouth prosobranchs.—J. mar. Ass.,20, 547–565, PlymouthGoogle Scholar
  119. — (1937): The eggs and larvae of the British prosobranch with special reference to those living in the plankton.—J. mar. Ass.,22, 105–166, PlymouthGoogle Scholar
  120. LEHMANN, U. (1976): Ammoniten, 1–171, 143 Abb., Stuttgart (Enke)Google Scholar
  121. LEMCHE, H. (1957): A new living deep-sea mollusc of the Cambro-Devonian Class Monoplacophora.— Nature,179, 413–416, LondonCrossRefGoogle Scholar
  122. LEMCHE, H. & WINGSTRAND, K.G. (1959): The anatomy ofNeopilina galatheae Lemche, 1957.— Galathea Rept.,3, 9–71.Google Scholar
  123. LEWIS, J.B. (1960): The fauna of rocky shores of Barbados, West Indies—Can. J. Zool,38, 391–435CrossRefGoogle Scholar
  124. LINDBERG, D.R. (1979):Problacmaea moskalevi Golikov & Kussakin, a new addition to the Eastern Pacific limpet fauna.—The Veliger,22, 57–61, 40 Taf., 13 Abb., BerkeleyGoogle Scholar
  125. MAPES, R.H. (1979): Carboniferous and Permian Bactritoidea (Cephalopoda) in North America.— The Univ. Kansas Paleont. Contr.64, 1–75, 14 Abb., 41 Taf., LawrenceGoogle Scholar
  126. MAREK, L. & YOCHELSON, E.L. (1976): Aspects of the biology of Hyolitha (Mollusca).—Lethaia,9, 65–82, 4 Abb., OsloGoogle Scholar
  127. MCLEAN, J.H. (1979): A new monoplacophoran limpet from the continental shelf off Southern California.—Contr. Sci. Natur. Hist. Mus. Los Angeles County 307, 1–19, 25 Abb., Los AngelesGoogle Scholar
  128. MEISENHEIMER, J. (1897): Entwicklungsgeschichte vonLimax maximus L.I. Furchung und Keimblätterbildung.— Z. wiss. Zool.,62, 415–468, Taf., 20–23, 10 Abb., LeipzigGoogle Scholar
  129. — (1898): Entwicklungsgeschichte vonLimax maximus L. II Die Larvenperiode.—Z. wiss. Zool.,63, 573–664, Taf., 32–40, 20 Abb., LeipzigGoogle Scholar
  130. MENZIES, R.J. (1968): New species ofNeopilina, of the Cambro-Devonian Class Monoplacophora from the Milne-Edwards Deep of the Peru-Chile Trench, R/V Anton Bruun.—Mar. Biol. Assoc. India, Proc. Sympos. Mollusca, Symp. Ser.,3, 1–9, BombayGoogle Scholar
  131. MILLER, A.K. & UNKLESBAY, A.G. (1943): The siphuncle of late Paleozoic ammonoids.—J. Paleont.17, 1–25, TulsaGoogle Scholar
  132. MOOR, B. (1977): Zur Embryologie vonBradybaena (Eulota) fruticum Müller (Gastropoda, Pulmonata, Stylommatophora).—Zool. Jb., Anat.,97, 323–399, 27 Abb., JenaGoogle Scholar
  133. MUTVEI, H. (1957): On the relations of the principal muscles in the shell inNatilus and some fossil Nautiloids.—Arkiv Min. Geol.,2/3, 10, 219–254, 20 Taf., 24 Abb., StockholmGoogle Scholar
  134. NAEF, A. (1921–1928): Die Cephalopoden.—Fauna und Flora des Golfs von Neapel 35. Monogr., 2 Bände, NeapelGoogle Scholar
  135. — (1922): Die fossilen Tintenfische eine paläozoische Monographie.—1–322 Jena (G. Fischer)Google Scholar
  136. OCKELMANN, K.W. (1965): Developmental types in marine Bivalves and their distribution along the Atlantic Coast of Europe.—In: COX, L.R., & PEAKE, J.F. (Ed.): Proc. 1. Europ. Malacol. Congr., 25–35, LondonGoogle Scholar
  137. OTTO, H. & TÖNNIGES, C. (1906): Untersuchungen über die Entwicklung vonPaludina vivipara. —Z. wiss. Zool.80, 411–514, Taf. 22–27, 29 Abb., LeipzigGoogle Scholar
  138. PEARSE, J.S., (1979): Polyplacophora.—In: GIESE, A.C., & PEARSE, J.S. (Ed.): Reproduction of marine invertebrates,5, 27–85Google Scholar
  139. PELSENEER P. (1911): Recherches sur l'embryologie des gastéropodes.—Mem. Acad. Belg., Cl. Sci., Ser. II-3, 1–167, BrüsselGoogle Scholar
  140. PILKINGTON, M.C., (1910): Young stages and metamorphosis in an atlantid heteropod occurring off South-Eastern New Zealand.—Proc. malac. Soc. London,39, 117–124, LondonGoogle Scholar
  141. POJETA, J. (1978): The origin and early taxonomic diversification of pelecypods.—Phil. Trans. Roy. Soc. London, B284, 225–243, 20 Taf., 9 Abb., 2 Tab., LondonGoogle Scholar
  142. POJETA, J. & RUNNEGAR, B. (1976): The paleontology of the rostroconch mollusks and the early history of the phylum Mollusca.—Geol. Surv. Prof. Pap.,968, 1–88, 54 Taf., 14 Abb., 3 Tab., WashingtonGoogle Scholar
  143. RAVEN, C.P. (1952): Morphogenesis inLimnaea stagnalis and its disturbance by Lithium.— J. Exper. Zool.,121, 1–78CrossRefGoogle Scholar
  144. RICHTER, G. & THORSON, G. (1975): Pelagische Prosobranchier-Larven des Golfes von Neapel.— Ophelia13, 109–185, 20 Taf., OsloGoogle Scholar
  145. RISTEDT, H. (1971): Zum Bau der Orthoceriden Cephalopoden.—Palaeontographica, A137, 155–195, Taf., 28–42, 7 Abb., StuttgartGoogle Scholar
  146. ROBERT, A. (1902): Recherches sur le développement des Troques.—Arch. Zool. Exp. Gén. 3 ser.,10, 269–538Google Scholar
  147. ROBERTSON, R. (1971): Scanning electron microscopy of planktonic larval marine Gastropod shells.—The Veliger,14, 1–12, 34 Abb., BerkeleyGoogle Scholar
  148. ROLLINS, H. & BATTEN, R. (1968): A sinus-bearing monoplacophoran and its role in the classification of primitive molluscs.—Palaeontology,11, 132–140, LondonGoogle Scholar
  149. RUNNEGAR, B. & JELL, P. (1976): Australian Middle Cambrian molluscs and their bearing on early molluscan evolution.—Alcheringa1, 109–138, 11 Abb., NorthfieldCrossRefGoogle Scholar
  150. RUNNEGAR, B. & POJETA, J. (1974): Molluscan phylogeny: the paleontological viewpoint.— Science,186, 311–317, 5 Abb., New YorkCrossRefGoogle Scholar
  151. RUNNEGAR, B. (1976): Origin and evolution of the class Rostroconchia.—Phil. Trans. Roy. Soc. London B284, 319–330, 12 Abb., CambridgeGoogle Scholar
  152. SALVINI-PLAWEN, L. v. (1968): Beiträge zur Systematik der niederen Mollusken.—Marine Biological Association of India, Proc. Symp. 3/Mol. (1), 248–256, CalcuttaGoogle Scholar
  153. — (1969): Solenogastres und Caudofoveata (Mollusca, Aculifera): Organisation und phylogenetische Bedeutung.—Malacologia,9, 191–216, 15 Abb., Ann ArborGoogle Scholar
  154. — (1980a): A reconsideration of systematics in the Mollusca (phylogeny, and higher classification).—Malacologia 19, 249–278, 5 Abb., 4 Tab., Ann ArborGoogle Scholar
  155. — (1980b): Was ist eine Trochophora? Eine Analyse der Larventypen mariner Protostomier. —Zool. Jb. Anat.,103, 389–423, 15 Abb., JenaGoogle Scholar
  156. — (1980c): Phylogenetischer Status und die Bedeutung der Mesenchymaten Bilateria.— Zool. Jb. Anat.,103, 354–373, 6 Abb., JenaGoogle Scholar
  157. SANDBERGER, G.F. (1850–1856): Die Versteinerungen, des Rheinischen Schichtensystems in Nassau.—1–564, WiesbadenGoogle Scholar
  158. SASTRY, A.N. (1979): Pelecypoda (excluding Ostreidae).—In: GIESE, A.C. & PEARSE, J.S. (Eds.): Reproduction of marine invertebrates,5, 113–292Google Scholar
  159. SCARLATO, O.A. & STAROBOGATOV, Y.I. (1978): Phylogenetic relations and the early evolution of the class Bivalvia.—Phil. Trans. Roy Soc. London, B,284, 217–224, 2 Abb., CambridgeGoogle Scholar
  160. SCHÄFER, w. (1955): Über die Bildung der Laichballen der Wellhorn-Schnecken.—Natur und Volk,85, 92–97, 6 Abb., FrankfurtGoogle Scholar
  161. SCHELTEMA, R.S. (1971): Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods.—Biol. Bull.,140, 284–322, Abb. 12, 6 Tab.Google Scholar
  162. — (1971): The dispersal of the larvae of shoal-water benthic invertebrate species overlong distance by ocean currents.—Fourth European Biol. Symp., z-28, 7 Abb., Cambridge (Univ. Press)Google Scholar
  163. SCHINDEWOLF, O.H. (1928): Zur Terminologie der Lobenlinie.—Paläont. Z.,9, 181–186, StuttgartGoogle Scholar
  164. SCHRÖDER, O. (1907): Beiträge zur Histologie des Mantels vonCalyculina (Cyclas) lacustris Müller.—Zool. Anz.,31, 506–510, 2 Abb., LeipzigGoogle Scholar
  165. SMITH, F.G. (1935): The development ofPatella vulgata.—Phil. Trans. Roy. Soc. Lond., B.,225, 95–125, CambridgeGoogle Scholar
  166. SATH, L.F. (1933): The evolution of the Cephalopoda.—Biol. Rev. Cambridge Philos. Soc.,8, 418–462, CambridgeCrossRefGoogle Scholar
  167. SPIESS, P.E. (1971): Organogenese des Schalendrüsenkomplexes bei einigen coleoiden Cephalopoden des Mittelmeeres.—Rev. Suisse Zool.,79, 167–226, 10 Taf., 15 Abb., 8 Taf., GenfGoogle Scholar
  168. STASEK, C.R. (1972): The molluscan framework.—In: FLORKIN, M. & SCHEER, B.T. (Eds.): Chemical Zoology,7, Acad. Press, N.Y.Google Scholar
  169. STASEK, C.R. & McWWILLIAMS, W.R. (1973): The comparative morphology and evolution of the molluscan mantle edge.—The Veliger,16, 1–19, BerkeleyGoogle Scholar
  170. STENZEL, H.B. (1964): LivingNautilus. Treatise on Invertebrate Paleontology, K. Mollusca 3, K59-K93, LawrenceGoogle Scholar
  171. STRATHMANN, R.R. (1978): The evolution and loss of feeding larval stages of marine invertebrates. —Evolution,32, 894–906, 2 Abb., LawrenceCrossRefGoogle Scholar
  172. SWEET, W.C. (1959): Muscle-attachment impressions in some Paleozoic nautiloid cephalopods.— J. Paleont.,33, 293–304, TulsaGoogle Scholar
  173. — (1964): Nautiloidea-Orthocerida.—Treatise on Invertebrate Paleontology, K, Mollusca 3, K216-K260, LawrenceGoogle Scholar
  174. TANABE, K., FUKUDA, Y. & OBATA, I. (1980): Ontogenetic development and functional morphology in the early growth-stages of three Cretaceous ammonits.—Bull. Nat. Sci. Mus. Ser. C,6, 9–26, 5 Taf., TokyoGoogle Scholar
  175. TANABE, K., OBATA, I., FUKUDA, Y. & FUTAKAMI, M. (1979): Early shell growth in some Upper Cretaceous ammonites and its implications to major taxonomy.—Bull. Nat. Sci. Mus., Ser. C,5, 153–176, 6 Taf., TokyoGoogle Scholar
  176. TAYLOR, D.W. & SOHL, N.F. (1962): An outline of gastropod classification.—Malacologia,1, 7–32, Ann ArborGoogle Scholar
  177. TEICHERT, C. (1967): Major features of cephalopod evolution,—In: TEICHERT, C. & YOCHELSON, E.L. (Eds.): Essays in Paleontology and Stratigraphy, 162–210, Kansas Univ. Dept. Geol. Spec. Publ.,2, 20 Abb., 1 Tab., LawrenceGoogle Scholar
  178. THIELE, J. (1929–1935): Handbuch der systematischen Weichtierkunde, 2 Bänder, Jena, (Fischer)Google Scholar
  179. THOMPSON, T.E. (1967): Adaptive significance of gastropod torsion.—Malacologia,5, 423–430, 3 Abb., Ann ArborGoogle Scholar
  180. THORSON, G. (1935): Studies on the egg capsules and development of Arctic marine prosobranchs. —Medd. Groenl.,100, 1–71, KopenhagenGoogle Scholar
  181. — (1946): Reproduction and larval development of Danisch marine bottom invertebrates.— Meddel. Komm. Havundersoeg., Ser. Plankton,4, 1–523, KopenhagenGoogle Scholar
  182. — (1967):Clanculus bertheloti D'Orbigny, 1839: Eine brutpflegende prosobranchiate Schnecke aus der Brandungszone von Teneriffa.—Z. Morph. ökol. Tiere,60, 162–175, 10 Abb., BerlinCrossRefGoogle Scholar
  183. TIMMERMANS, L.P.M.: (1969): Studies on shell formation in molluscs.—Netherl. J. Zool.,19, 417–523, 14 Taf., 6 Abb., LeidenGoogle Scholar
  184. TROSCHEL, F.H. (1856–1893): Das Gebiss der Schnecken, zur Begündung einer natürlichen Classification,1, 1–252,2, 1–409, BerlinGoogle Scholar
  185. UNDERWOOD, A. (1972): Spawning, larval development and settlement behavior ofGibbula cineraria (Gastropoda: Prosobranchia), with a reappraisal of torsion in gastropods.— Marine Biol.,17, 341–349CrossRefGoogle Scholar
  186. VOGEL, K. & GUTMANN, W.F. (1980): The derivation of pelecypods: role of biomechanics, physiology and environment.—Lethaia,13, 269–275, 2 Abb., OlsoGoogle Scholar
  187. WALLER, T.R. (1980): Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia).—Smithsonian Contr. Zool.,313, 1–58, 1 Taf., 46 Abb., WashingtonGoogle Scholar
  188. WALLER, T.R. (1981): Functional morphology and development of veliger larvae of the European oyster,Ostrea edulis Linné.—Smithsonian Contr. Zool.,328, 1–70, 152 Abb., WashingtonGoogle Scholar
  189. WARD, J. (1966): The breeding cycle of the keyhole limpet,Fissurella barbadensis.—Bull. Mar. Sci.,16, 685–695, MiamiGoogle Scholar
  190. WEBBER, H.H. (1979): Gastropoda: Prosobranchia.—In: GIESE, A.C. & PEARSE, J.S. (Eds.): Reproduction of marine invertebrates,5.Google Scholar
  191. WENZ, W. (1938–1944): Gastropoda, Teil 1, Allgemeiner Teil und Prosobranchia.—In: SCHINDEWOLF, O.H. (Ed.): Handbuch der Paläontologie,6, 1639 S., Berlin (Borntraeger)Google Scholar
  192. WIERZEJSKI, A. (1905): Embryologie vonPhysa fontinalis L..—Z. wiss. Zool.,83, 502–706, Taf. 18–27, 8 Abb., LeipzigGoogle Scholar
  193. YOCHELSON, E.L. (1971):Nevadaspira, a new Devonian septate gastropod.—In: DUTRO, J.T. (Ed.): Paleozoic Perspectives: a Paleontologic Tribute to G. Arthur Cooper. Smithsonian Contr. Paleont.,3, 233–241, LondonGoogle Scholar
  194. — (1978): An alternative approach to the interpretation of the phylogeny of ancient mollusks.—Malacologia,17, 165–191, 1 Abb., Ann ArborGoogle Scholar
  195. YOCHELSON, E.L., FLOWER, R.H. & WEBERS, G.F. (1973): The bearing of the new Late Cambrian genusKnightoconus Mollusca: Monoplacophora) upon the origin of the Cephalopoda.— Lethaia,6, 275–310, 10 Abb., OsloGoogle Scholar
  196. YONGE, C.M. (1960): General characters of Mollusca.—Treatise on Invertebrate Paleontology, I, Mollusca 1, 13–136, LawrenceGoogle Scholar

Copyright information

© American Oil Chemists’ Society 1982

Authors and Affiliations

  • Klaus Bandel
    • 1
  1. 1.Institut für PaläontologieUniversitätErlangen

Personalised recommendations