, Volume 29, Issue 1, pp 251–263 | Cite as

Microbial origin of travertine fabrics—two examples from Southern Germany (Pleistocene stuttgart travertines and miocene riedöschingen Travertine)

  • Christoph G. Koban
  • Günter Schweigert


In Southern Germany, two examples of travertines of different age and depositional morphology were examined in detail. Travertines are laminated carbonate rocks formed by precipitation from mineral and/or thermal waters. They include characteristic facies types, such as bushy layers (‘shrubs’) referred to calcification of branching microbes (‘Dichothrix’-morphotype), laminar microbial mats, peloidal layers, and gas bubble layers formed within the sediment. In travertines, microbial activity is the most important factor for carbonate precipitation.

Tufas differ from travertines by their abundance of molds of higher plants (leaves, reed, moss, green algae). They may be associated with travertines, but do not exhibit strict travertine facies types. Tufas are common in normal fresh water environments. Contrary to travertines and tufas, calcareous sinters usually occur in restricted areas like spring fissures, caves, or in pores, where microbial activity is not totally absent, but not of paramount importance for precipitation.

Pedogenetic processes, which can alter travertine deposits, are responsible for large-scale features such as tepee-structures, and some intraclastic layers, and microscopic structures like endolithic borings andMicrocodium. Travertines may also grade into lacustrine limestones with Characeae, ostracods, and aquatic gastropods.


Microfacies Travertines Microbial Calcification Structures Southern Germany Pleistocene/Miocene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, K.D. (1986): Schrifttum zur Erforschung der Stuttgarter Travertine.—Fundberichte aus Baden-Württemberg,11: 92–100, 2 Figs, 1 Table, StuttgartGoogle Scholar
  2. Behm-Blancke, G. (1960): Altsteinzeitliche Rastplätze im Travertingebiet von Taubach, Weimar, Ehringsdorf.—Alt-Thüringen,4: 1–246, 103 Plts., 66 Figs., WeimarGoogle Scholar
  3. Böhm, F. &Brachert, T.C. (1993): Deep-water Stromatolites andFrutexites Maslow from the Early and Middle Jurassic of S-Germany and Austria.—Facies,28, 145–168, 5 Pls., 9 Figs., ErlangenGoogle Scholar
  4. Braithwaite, C.J.R., Casanova, J., Frevert, T. &Whitton, B.A. (1989): Recent stromatolites in landlocked pools on Aldebra, Western Indian Ocean.—Palaeogeogr., Palaeoclimatol., Palaeoecol.,69, 145–165, 23 Figs., AmsterdamCrossRefGoogle Scholar
  5. Brock, T.D. (1976): Environmental microbiology of living stromatolies.—In:Walter, M.R. (ed.): Stromatolites.—Dev. Sed.,20, 141–148, 1 Table, Amsterdam (Elsevier)Google Scholar
  6. Burne, R.V. &Moore, L.S. (1987): Microbialites: Organosedimentary Deposits of Benthic Microbial Communities.— Palaios,2, 241–254, 10 Figs., TulsaGoogle Scholar
  7. Castenholz, R.W. (1973): Ecology of blue-green algae in hot springs.—InCarr, N.G. &Whitton, B.A. (eds.): The Biology of Blue-green Algae.—379–414, London (Blackwell)Google Scholar
  8. Chafetz, H.S. (1981): Photographs of bacterial shrubs in travertine, Idaho and Italy.—J. Sed. Petrol.,51, 1162, TulsaGoogle Scholar
  9. — (1986): Marine peloids: a product of bacterially induced precipitation of calcite.—J. Sed. Petrol.,56, 812–817, 3 Figs., TulsaGoogle Scholar
  10. Chafetz, H.S. &Buczynski, C. (1992): Bacterially induced lithification of microbial mats.—Palaios,7, 277–293, 5 Figs., TulsaGoogle Scholar
  11. Chafetz, H.S. &Butler, J.C. (1980): Petrology of recent caliche pisoliths, sphaerulites, and speleothem deposits from central Texas.—Sedimentology,27, 497–518, 17 Figs., OxfordCrossRefGoogle Scholar
  12. Chafetz, H.S. &Folk, R.L. (1984): Travertines: depositional morphology and the bacterially constructed constituents.—J. Sed. Petrol.,54, 289–316, 32 Figs., TulsaGoogle Scholar
  13. Chafetz, H.S. &Meredith, J.C. (1983): Recent travertine pisoliths (pisoids) from southeastern Idaho, USA.—In:Peryt, T.M. (ed.): Coated Grains.—450–455, 4 Figs., New York (Springer)Google Scholar
  14. Chafetz, H.S., Rush, P.F. &Utech, N.M. (1991a): Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system.— Sedimentology,38, 107–126, 13 Figs., 3 Tables, OxfordCrossRefGoogle Scholar
  15. Chafetz, H.S., Utech, N.M. &Fitzmaurice, S.P. (1991b): Differences in the δ18O and δ13C signatures of seasonal laminae composing travertine stromatolites.—J. Sed. Petrol.,61, 1015–1028, 11 Figs., 6 Tables, TulsaGoogle Scholar
  16. Cipriani, N., Malesani, P. &Vannucci, S. (1978): I travertini dell’Italia Centrale.—Boll. Serv. geol. Italia,98, 85–115, 5 Figs., 7 Tables, RomaGoogle Scholar
  17. Cornée, A., Dickman, M. &Busson, G. (1992): Laminated cyanobacterial mats in sediments of solar salt works. Some sedimentological implications.—Sedimentology,39, 599–612, 12 Figs., OxfordCrossRefGoogle Scholar
  18. Damm, B. (1964): Das Kalksinter-Vorkommen des Zendan-i-Suleiman im Nordiran.—Natur und Museum,94, 139–152, 10 Figs., Frankfurt am MainGoogle Scholar
  19. Emeis, K.C., Richnov, H.-H. &Kempe, S. (1987): Travertine formation in Plitvice National Park, Yugoslavia: chemical versus biological control.—Sedimentology,34, 595–609, 11 Figs., 4 Tables, OxfordCrossRefGoogle Scholar
  20. Esteban, C.M. (1974): Caliche textures and ‘Microcodium’.—Boll. Soc. geol. Ital.,92, 105–125, RomaGoogle Scholar
  21. Esteban, C.M. & Klappa, C.F. (1983): Subaerial exposure environment. —In:Scholle, P.A., Bebout, D.G. & Moore, C.H. (eds.).—Mem. amer. Ass. Petrol. Geol.,33, 1–63, 88 Figs., 2 Tables, TulsaGoogle Scholar
  22. Flügel, E. (1978): Mikrofazielle Untersuchungsmethoden von Kalken.—VI +454 p., 33 Plts., 68 Figs., 57 Tables, Berlin (Springer)Google Scholar
  23. Folk, R.L. &Chafetz, H.S. (1983): Pisoliths (pisoids) in Quaternary travertines of Tivoli, Italy.—In:Peryt, T.M. (ed.): Coated Grains, 474–487, 17 Figs., 1 Table, Berlin (Springer)Google Scholar
  24. Folk, R.L., Chafetz, H.S. & Tiezzi, P.A. (1985): Bizarre forms of depositional and diagenetic calcite in hot-spring travertines, central Italy.—In:N. Schneidermann & Harris, P.M. (eds.): Carbonate cements.—SEPM, Special Publication,36, 349–369, 11 Figs., 2 Tables, TulsaGoogle Scholar
  25. Frank, M., Ströbel, W. &Aldinger, V. (1968): Die Mineralquellen von Stuttgart—Bad Cannstatt—Berg. Geschichte, Hydrologie und Chemismus.—Jb. Stat. Landeskde.,12, 1–70, 6 Figs., StuttgartGoogle Scholar
  26. Freytet, P. &Plaziat, J.-C. (1982): Continental carbonate sedimentation and pedogenesis—Late Cretaceous and Early Tertiary of southern France.—Contributions to Sedimentology,12, 1–214, 49 Plts., 59 Figs., StuttgartGoogle Scholar
  27. Gavish, E., Krumbein, W.E. &Halevy, J. (1985) Geomorphology, mineralogy and groundwater geochemistry as factors of the hydrodynamic system of the Gavish Sabkha.—In:G.M. Friedman &W.E. Krumbein (eds.): Hypersaline ecosystems. The Gavish Sabkha.—Ecological Studies,53, 186–217, 24 Figs., 1 Table, Berlin (Springer)Google Scholar
  28. Gerdes, G. &Krumbein, W.E. (1987): Biolaminated deposits.— Lect. Notes Earth Sci.,9, 1–183, 43 Figs., 11 Tables, BerlinGoogle Scholar
  29. Golubic, S. (1976a): Organisms that build stromatolites.—In:Walter, M.R. (ed.): Stromatolites.—Dev. Sed.,20, 113–126, 1 Plate, 2 Figs., 1 Table, Amsterdam (Elsevier)Google Scholar
  30. — (1976b): Taxonomy of extant stromatolite-building cyanophytes. —In:Walter, M.R. (ed.): Stromatolites.—Dev. Sed.,20, 127–140, 4 Figs., 1 Table, Amsterdam (Elsevier)Google Scholar
  31. Golubic, S. (1979): The relationship between blue-green algae and carbonate deposits.—In:Carr, N.G. &Whitton, B.A. (eds.): The Biology of Blue-green Algae.—434–472, 19 Figs., London (Blackwell)Google Scholar
  32. González, L.A., Carpenter, S.J. &Lohmann, K.C. (1992): Inorganic calcite morphology: Roles of fluid chemistry and fluid flow.—J. Sed. Petrol.,62, 382–399, 7 Figs., 4 Tables, TulsaGoogle Scholar
  33. Grüninger, W. (1965): Rezente Kalktuffbildung im Bereich der Uracher Wasserfälle.—Abh. Karst-u. Höhlenkde., E,2, 1–113, 31 Figs., 9 Tables, MünchenGoogle Scholar
  34. Guo, L. &Riding, R. (1992): Aragonite laminae in hot water travertine crusts, Rapolano Terme, Italy.—Sedimentology,39, 1067–1079, 12 Figs., OxfordCrossRefGoogle Scholar
  35. Handford, C.R., Kendall, A.C., Prezbindowski, D.R., Dunham, J.B. &Logan, B.W. (1984): Salina-margin tepees, pisoliths, and aragonite cements, Lake Mac Leod, Western Australia: Their significance in interpreting ancient analogs.—Geology,12, 523–527, 5 Figs., Boulder/ColoradoCrossRefGoogle Scholar
  36. Hartkopf-Fröder, Ch., Hiss, M. &Leinfelder, R.R. (1989): Holozäne Süßwasserkalke im Alme- und Aftetal südlich von Büren (Kreis Paderborn, Nordrhein-Westfalen).—Münster. Forsch. Geol. Paläont.,69, 261–289, 12 Figs., 2 Tables, MünsterGoogle Scholar
  37. Heimann, A. &Sass, E. (1985): Travertines in the northern Hula Valley, Israel.—Sedimentology,36, 95–108, 17 Figs., OxfordCrossRefGoogle Scholar
  38. Horodyski, R.J. (1977):Lyngbya mats at Laguna Mormona, Baja California, Mexico: comparison with Proterozoic stromatolites. —J. Sed. Petrol.,47: 1305–1320, TulsaGoogle Scholar
  39. Horodyski, R.J. &Von der Haar, S.P. (1975): Recent calcareous stromatolites from Laguna Mormona (Baja California, Mexico). —J. Sed. Petrol.,51, 1193–1203, TulsaGoogle Scholar
  40. Irion, G. &Müller, G. (1968): Mineralogy, petrology and chemical composition of some calcareous tufa from the Schwäbische Alb, Germany.—In:Müller, G. &Friedman, G.M. (eds.): Recent developments in carbonate sedimentology in Central Europe.—157–171, 16 Figs., New York (Springer)Google Scholar
  41. Jones, B. &Kahle, C.F. (1986): Dendritic calcite crystals formed by calcification of algal filaments in a vadose environment.— J. Sed. Petrol.,56, 217–227, 7 Figs., TulsaGoogle Scholar
  42. Jones, B. &MacDonald, R.W. (1989): Micro-organisms and crystal fabrics in cave pisoliths from Grand Cayman, British West Indies.—J. Sed. Petrol.,59, 387–396, 7 Figs., TulsaGoogle Scholar
  43. Jones, B. &Squair, Ch.A. (1989): Formation of peloids in plant rootlets, Grand Cayman, British West Indies.—J. Sed. Petrol.,59, 1002–1007, 4 Figs., 1 Table, TulsaGoogle Scholar
  44. Julia, R. (1983): Travertines.—In:Scholle, P.A., Bebout, D.G. & Moore, C.H. (eds.): Carbonate Depositional Environments.— Mem. Am. Ass. Petrol. Geol.,33, 64–72, 17 Figs., TulsaGoogle Scholar
  45. Kazmierczak, J. &Kempe, S. (1992): Recent cyanobacterial counterparts of PaleozoicWetheredella and related problematic fossils.—Palaios,7, 294–304, 7 Figs., 1 Table, TulsaGoogle Scholar
  46. Kendall, C.G. &Warren, J. (1987): A review of the origin and setting of tepees and their associated fabrics.—Sedimentology,34, 1007–1027, 20 Figs., 2 Tables, OxfordCrossRefGoogle Scholar
  47. Kiderlen, H. (1931): Beitrage zur Stratigraphie und Paläogeographie des süddeutschen Tertiärs.—N. Jb. Geol. Paläont., Beil.-Bd.,66, 215–384, 15 Figs., 2 Plts., StuttgartGoogle Scholar
  48. Kitano, Y. (1963): Geochemistry of calcareous deposits found in hot springs.—J. Earth Sci. Nagoya University,11, 68–100, 22 Figs., 8 Tables, NagoyaGoogle Scholar
  49. Klappa, C.F. (1978): Biolithogenesis ofMicrocodium: elucidation. —Sedimentology,25, 489–522, 10 Figs., 1 Table, OxfordCrossRefGoogle Scholar
  50. Koban, C.G. (in prep.): Faziesanalyse und Genese der quartären Stuttgarter Sauerwasserkalke, Baden-Württemberg.—Profil, Stuttgart (ph-D thesis)Google Scholar
  51. Koban, C.G. &Schweigert, G. (1993, in press): Süddeutsche Travertinvorkommen im Vergleich—Stuttgarter Travertine (Mittel-Pleistozän) und Riedöschinger Travertin (Mittel-Miozän). —N. Jb. Geol. Paläont., Abh.,189, 171–197 6 Figs., StuttgartGoogle Scholar
  52. Krumbein, W.E. (1979): Calcification by bacteria and algae.—In:Trudinger, P.A. &Swaine, D.J. (eds.): Biogeochemical Cycling of Mineral-forming Elements.—47–68, New York (Elsevier)Google Scholar
  53. Krumbein, W.E. &Cohen, Y. (1977): Primary production, mat formation and lithification chances of oxygenic and facultative anoxygenic cyanophytes (cyanobacteria).—In:Flügel, E. (ed.): Fossil Algae.—37–56, 19 Figs., New York (Springer)Google Scholar
  54. Leinfelder, R.R. (1985): Cyanophyte calcification morphotypes and depositional environments (Alenquer Oncolite, Upper Kimmeridgian?, Portugal).—Facies,12, 253–274, 2 Plts., 3 Figs., 2 Tables, ErlangenCrossRefGoogle Scholar
  55. Leslie, A.B., Tucker, M.E. &Spiro, B. (1992): A sedimentological and stable isotopic study of travertines and associated sediments within Upper Triassic lacustrine limestones, South Wales, U.K..—Sedimentology,39, 613–629, 13 Figs., OxfordCrossRefGoogle Scholar
  56. Love, K.M. &Chafetz, H.S. (1988): Diagenesis of laminated Travertine crusts, Arbuckle Mountains, Oklahoma.—J. Sed. Petrol.,58, 441–445, 9 Figs., TulsaGoogle Scholar
  57. Macintyre, I.G. (1985): Submarine Cements—the Peloidal Question. —In:Schneidermann, N. & Harris, P.M. (eds.): Carbonate Cements.—109–116, 7 Figs., TulsaGoogle Scholar
  58. Mäussnest, O. &Schreiner, A. (1982): Karte der Vorkommen von Vulkangesteinen im Hegau.—Abh. geol. Landesamt Baden-Württemberg,10: 1–48, Freiburg i. BreisgauGoogle Scholar
  59. Merz, M.U.E. (1992): The Biology of Precipitation by Cyanobacteria. —Facies,26, 81–102, 2 Plts., 7 Figs., 2 Tables, ErlangenGoogle Scholar
  60. Monty, C.V. (1976): The origin and development of cryptalgal fabrics.—In:Walter, M.R. (ed.): Stromatolites.—Dev. Sed.,20, 193–249, 36 Figs., Amsterdam (Elsevier)Google Scholar
  61. Monty, C.V. &Hardie, L.A. (1976): The geological significance of freshwater bluegreen algal calcareous marsh.—In:Walter, M.R. (ed.): Stromatolites.—Dev. Sed.,20, 447–477, 16 Figs., Amsterdam (Elsevier)Google Scholar
  62. Monty, C.V. &Mas, J.R. (1981): Lower Cretaceous (Wealdenian) blue-green al gal deposits of the Province of Valencia, Eastern Spain.—In:Monty, C.V. (ed.): Phanerozoic stromatolites, 85–120, 27 Figs., Berlin (Springer)Google Scholar
  63. Myrow, P.M. &Coniglio, M. (1991): Origin and diagenesis of cryptobionticFrutexites in the Chapel Island Formation (Vendian to Early Cambrian) of southeast Newfoundland, Canada.—Palaios,6, 572–585, 13 Figs., 1 Table, TulsaGoogle Scholar
  64. Nägele, E. (1962): Zur Petrographie und Entstehung des Albsteins. —N. Jb. Geol. Paläont. Abh.,115, 44–120, 5 Plts., 10 Figs., 2 Tables, StuttgartGoogle Scholar
  65. Ordónez, S. &García del Cura, M.A. (1977): Facíes oncolíticas en medio continental: Aplicación al sector SE de la Cuenca del Duero.—Estudios geol.,33, 459–466, 12 Figs., MadridGoogle Scholar
  66. Pedley, H.M. (1990): Classification and environmental models of cool freshwater tufas.—Sed. Geol.,68, 143–154, 6 Figs., AmsterdamCrossRefGoogle Scholar
  67. Pentecost, A. (1993): British travertines: a review.—Proc. Geol. Ass.,104, 23–39, 6 Figs., 3 Tables, LondonCrossRefGoogle Scholar
  68. Pentecost, A. &Riding, R. (1986): Calcification in cyanobacteria. —In:Leadbeater, B.S.C. &Riding, R. (eds.): Biomineralisation in lower plants and animals.—73–90, 6 Figs., Oxford (Clarendon)Google Scholar
  69. Pia, J. (1933): Die rezenten Kalksteine.—Z. Kristall. Mineral. Petrol., Abt. B, Ergänzungs-Band,1, 420 S., 4 Plts., 22 Figs., 65 Tables, LeipzigGoogle Scholar
  70. Read, J.F. (1976): Calcretes and their Distinction from Stromatolites. In:Walter, M.R. (ed.): Stromatolites.—Dev. Sed.,20, 55–71, Amsterdam (Elsevier)Google Scholar
  71. Reiff, W. (1986): Die Sauerwasserkalke von Stuttgart.—Fundberichte aus Baden-Würtemberg,11, 2–24, 22 Figs., 2 Tables, StuttgartGoogle Scholar
  72. Riding, R. (1979): Origin and diagenesis of lacustrine algal bioherms at the margin of the Ries crater, Upper Miocene, southern Germany.—Sedimentology,26, 645–680, 41 Figs., OxfordCrossRefGoogle Scholar
  73. — (1983): Cyanoliths (cyanoids): Oncoids formed by calcified cyanophytes.—In:Peryt, T.M. (ed.): Coated Grains.—276–289, 5 Figs., New York (Springer)Google Scholar
  74. Risacher, F. &Eugster, H.P. (1979): Holocene pisoliths and encrustations associated with spring-fed surface pools, Pastos Grandes, Bolivia.—Sedimentology,26, 253–270, 7 Figs., 2 Tables, OxfordCrossRefGoogle Scholar
  75. Rutte, E. (1954a): Zwei neue Vorkommen vonMicrocodium elegans (Chlorophyceae) im Tertiär Südwestdeutschlands.— Paläont. Z.,28, 145–154, 5 Figs., StuttgartGoogle Scholar
  76. — (1954b): Süßwasserkalke und Kalkalgenbildung in der chattischen Unteren Süßwassermolasse von Hoppetenzell nördlich Stockach/Baden.—Geol. Jb.,69, 517–536, 2 Plts, 4 Figs., HannoverGoogle Scholar
  77. — (1954c): Eine Klassifikation der karbonatischen Süßwassergesteine, mit Beispielen aus Südwestdeutschland.—N. Jb. Geol. Paläont. Abh.,100, 208–246, 5 Plts., 11 Figs., StuttgartGoogle Scholar
  78. Schäfer, A. (1973): Zur Entstehung von Seekreide-Untersuchungen am Untersee (Bodensee).—N. Jb. Geol. Paläont. Mh.,1973, 216–230, 6 Figs., StuttgartGoogle Scholar
  79. Schäfer, A. &Stapf, K.R.G. (1978): Permian Saar-Nahe-Basin and recent Lake Constance (Germany): two environments of lacustrine algal carbonates.—In:Matter, A. &Tucker, M.E. (eds.): Modern and ancient lake environments.—Int. Ass. Sed. Spec. Publ.,2, 83–107, 22 Figs., Oxford (Blackwell)Google Scholar
  80. Schneider, J. (1977): Carbonate construction and decomposition by epilithic and endolithic microorganisms in salt- and fresh-water. —In:Flügel, E. (ed.): Fossil algae.—248–260, 3 Pls., 4 Figs., New York (Springer)Google Scholar
  81. Scholl, D.W. &Taft, W.H. (1964): Algal contributors to the formation of calcareous tufa, Mono Lake, California.—J. Sed. Petrol.,34, 309–319, 11 Figs., TulsaGoogle Scholar
  82. Schreiber, B.C., Smith, D. &Schreiber, E. (1981): Spring peas from New York State: nucleation and growth of fresh water hollow ooliths and pisoliths.—J. Sed. Petrol.,51, 1341–1346, 6 Figs., TulsaGoogle Scholar
  83. Schweigert, G. (in prep.): Faziestypen und paläogeographisches Umfeld tertiärer Süßwasserkarbonate auf der westlichen Schwäbischen Alb und im Hegau (Baden-Württemberg).— Profil, Stuttgart (Ph-D thesis)Google Scholar
  84. Schweigert, G. & Koban, C.G. (1993, in press): Ein besonderes Fossil.—Paläont. Z.,67, StuttgartGoogle Scholar
  85. Stirn, A. (1964): Kalktuffvorkommen und Kalktufftypen der Schwäbischen Alb.—Abh. Karst-u. Höhlenkde., E,1: 1–92, 23 Figs., MünchenGoogle Scholar
  86. Warren, J.K. (1982): The hydrological significance of holocene tepees, stromatolites and box work limestones in coastal salines in South Africa.—J. Sed. Petrol.,51, 1341–1346, 21 Figs., 1 Table, TulsaGoogle Scholar
  87. Zöbelein, H.K. (1954): Helvetische Landschnecken aus einem Knollenkalk bei Riedöschingen.—Paläont. Z.,28, 155–158, StuttgartGoogle Scholar
  88. — (1985): Helicidenschichten und Albstein in der miozänen Vorlandmolasse Südwestdeutschlands.—Jh. geol. Landesamt Baden-Württemberg,27, 41–92, 1 Fig., Freiburg i. BreisgauGoogle Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1993

Authors and Affiliations

  • Christoph G. Koban
    • 1
  • Günter Schweigert
    • 1
  1. 1.Institut für Geologie u. Paläontologie der UniversitätStuttgartGermany

Personalised recommendations