Facies

, 36:123 | Cite as

Paleocene reefs on the Maiella Platform Margin, Italy: An example of the effects of the cretaceous/tertiary boundary events on reefs and carbonate platforms

  • Adam Vecsei
  • Esmail Moussavian
Article

Summary

Reef facies, reef types and their biotic associations in the Maiella platform margin (central Italy) provide qualitative evidence for a significant reef decline across the Cretaceous/Tertiary (K/T) boundary, and indicate two phases of reef recovery during the Paleocene. Rudists dominated the reef community until the latest Cretaceous. A significant sea-level fall around the time of the K/T boundary is documented by a truncation surface associated with emersion.

During sea-level highstands in the Danian to Early Thanetian and, more extensively, during the Late Thanetian, coral-algal patch-reefs grew along the platform margin and top. Already in the Danian to Early Thanetian, the reef communities were more diverse and the constructional types more evolved than previously known from this time. Differences between the Danian to Early Thanetian coral association, the Late Thanetian association, and Late Cretaceous coral faunas may have ecological or evolutionary causes.

Repeated emergence produced a complex diagenetic history in the Danian to Lower Thanetian limestones. All Paleocene reefs were displaced by gravitative redeposition. Coral-algal reefs are less important in the Early to mid Eocene, when alveolinid foraminifera dominated on the Maiella shelf. Reefs on the Maiella platform diversified and attained large sizes in the Late Eocene to Early Oligocene, as known from other Mediterranean platforms.

The external controls on the Late Cretaceous to Oligocene evolution and demise of reef communities that are most easily demonstrated with our data are sealevel fluctuations and climate change. We propose that the change in reef biota and reef types across the K/T boundary and during the Early Tertiary were important causes of the parallel changes in platform growth style.

Keywords

Platform-Margin Reefs Coral Fauna Maiellla Platform (Italy) Cretaceous/Tertiary Boundary 

References

  1. Accarie, H., Beaudoin, B., Cussey, R., Joseph, P. &Triboulet, S. (1986). Dynamique sédimentaire et structurale au passage plate-forme/bassin. Les faciès carbonatés Crétacés du massif de la Maiella (Abruzzes, Italie).—Mem. Soc. Geol. It.,36, 217–231, RomaGoogle Scholar
  2. Babic, L. & Zupanic, J. (1981): Various pore types in a Paleocene reef, Banja, Yugoslavia. In:Toomey, D.F. (ed.): European Fossil Reef Models.—Soc. Econ. Paleont. Mineral. Spec. Publ.,30, 473–482, TulsaGoogle Scholar
  3. Bally, A. (1954): Geologische Untersuchungen in den SE-Abruzzen. —Diss. Univ. Zürich, 291 pp., ZürichGoogle Scholar
  4. Beauvais, L. & Beauvais, M. (1974): Studies on the world distribution of the Upper Cretaceous corals.—In:Great Barrier Reef Commitee (ed.): Proc. Second Internat. Coral Reef Symp.,1, 475–494, BrisbaneGoogle Scholar
  5. Berggren, W.A. & Hollister, C.D. (1974): Paleogeography, paleobiogeography and the history of circulation in the Atlantic Ocean. In:Hay, W.W. (ed.): Studies in Paleo-Oceanography. —Soc. Econ. Paleont. Mineral. Spec. Publ.,20, 126–186, TulsaGoogle Scholar
  6. Bernecker, M. &Weidlich, O. (1990): The Danian (Paleocene) coral limestone of Fakse, Denmark: A model for ancient aphotic, azooxanthellate coral mounds.—Facies,22, 103–138, ErlangenGoogle Scholar
  7. Bosscher, H. &Schlager, W. (1993): Accumulation rates of carbonate platforms.—J. Geol.,101, 345–355, ChicagoCrossRefGoogle Scholar
  8. Bosellini, F.R. &Russo, A. (1992): Stratigraphy and facies of an Oligocene fringing reef (Castro Limestone, Salento Peninsula, Southern Italy).—Facies,26, 145–166, ErlangenGoogle Scholar
  9. Boucot, A.J. (1983): Does evolution take place in an ecological vaccum? II. “The time has come the walrus said...”.—J. Paleont.,57, 1–30, 4 Figs., Lawrence.Google Scholar
  10. Bryan, J.R. (1991): A Paleocene coral-algal-sponge reef from southwestern Alabama and the ecology of Early Tertiary reefs.—Lethia,24, 423–438, OsloGoogle Scholar
  11. Camoin, G., Bernet-Rolande, M.-C. &Philip, J. (1988): Rudistcoral frameworks associated with submarine volcanism in the Maastrichtian of the Pachino area (Sicily).—Sedimentology,35, 123–138, OxfordCrossRefGoogle Scholar
  12. Copper, P. (1988): Ecological succession in Phanerozoic reef ecosystems: is it real?.—Palaios,3, 136–152, TulsaGoogle Scholar
  13. Cros, P. &Lucas, G. (1982): Le récif à algues de Vigny (Danien, environs de Paris).—Sci. de la Terre,25, 3–37, NancyGoogle Scholar
  14. Drobne, K., Ogorelec, B., Plenicar, M., Zucci-Stolfa, M.L. &Turnsek, D. (1988): Maastrichtian, Danian and Thanetian beds in Dolenja Vas (NW Dinarides, Yugoslavia). Microfacies, foraminifers, rudists and corals.—Razprave SAZU (IV),29/6, 147–224, pls. 1–35, 16 Figs., LjubljanaGoogle Scholar
  15. Eberli, G.P., Bernoulli, D., Sanders, D. & Vecsei, A. (1993): From aggradation to progradation: The Maiella platform (Abruzzi, Italy).—In:Simo, T., Scott, R.W. & Masse, J.P. (eds.): Cretaceous Carbonate Platforms.—Amer. Assoc. Petroleum Geol. Mem.,56, 213–232, TulsaGoogle Scholar
  16. Esteban, M. (1991): Paleokarst: case histories.—In: Paleokarst and Paleokarstic Reservoirs. Postgrad.—Res. Inst. Sediment. Univ. Reading Contrib.,152, 120–158Google Scholar
  17. Fagerstrom, J.A. (1987). The Evolution of Reef Communities.— 600 pp., 51 Pls., many Figs., New York (Wiley)Google Scholar
  18. Flügel, E. &Flügel-Kahler, E. (1992). Phanerozoic reef evolution: Basic questions and data base.—Facies,26, 167–278, ErlangenGoogle Scholar
  19. Frakes, L.A., Francis, J.E. &Syktus, J.I. (1992): Climate Modes of the Phaneozoic, 271 pp., Cambridge (Cambridge Univ. Press)Google Scholar
  20. Frost, S.H. (1981): Oligocene reef coral biofacies of the Vicentin, northeast Italy. In:Toomey, D.F. (ed.): European Fossil Reef Models.—Soc. Econ. Paleont. Mineral. Spec. Publ.,30, 483–539, TulsaGoogle Scholar
  21. Guillevin, Y. (1977): Contribution à l étude des foraminifères du Montien du Bassin de Paris.—Cahiers Micropal.,4, 1–79, ParisGoogle Scholar
  22. Gumanti, Y.D. (1992): Lithostratigraphy of oil-bearing Tertiary bioherms in the Sirte Basin, Libya.—J. Petroleum Geol.,15, 305–318Google Scholar
  23. Hagn, H., Butt, A. &Malz, H. (1989): Paleocene shallow-water facies at Emperor Seamounts: DSDP Leg 55, northwest Pacific.—In:Jackson, E.D. &Koisumi, I. et. al..—Init. Repts. DSDP,55, 327–332, Washington (U.S. Govt. Printing Office)Google Scholar
  24. Hallam, A. (1989): The case for sea-level change as a dominant factor in mass extinction of marine invertebrates.—Phil. Trans. R. Soc. London, B325, 437–455, 3 Figs., 2 Tab., LondonGoogle Scholar
  25. Hallock, P., Premoli Silva, I. &Boersma, A. (1991): Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes.— Paleogeogr., Paleoclimatol., Paleoecol.,83, 49–64, AmsterdamCrossRefGoogle Scholar
  26. Haq, B.U., Hardenbol, J. & Vail, P.R. (1988): Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change.— In:Wilgus C.K., Hastings, B.S., Kendall, C.G.ST.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C. (eds.): Sea-Level Changes—An Integrated Approach.—Soc. Econ. Paleont. Mineral. Spec. Publ.,42, 71–108, TulsaGoogle Scholar
  27. Hsü, K.J. &McKenzie, J.A. (1985): A “strangelove” ocean in the earliest Tertiary.—In:Sundquist, E.T. &Broecker, W.S. (eds.): The Carbon Cycle and Atmospheric CO2. Natural Variations Archean to Present.—Geophys. Monogr.,32, 487–492, Washington (Amer. Geophys. Union)Google Scholar
  28. James, N.P. &Bourque, P.-A. (1992): Reefs and mounds. In:Walker, R.G. &James, N.P. (eds.): Facies Models. Response to Sea Level Change, 323–347, Toronto (Geol. Assoc. Canada).Google Scholar
  29. Johnson, C.C., &Kauffman, E.G. (1990): Originations, radiations andextinctions of Cretaceous rudistid bivalve species in the Caribbean Province.—In:Kauffman, E.G. &Walliser, O.H. (eds.): Extinction Events in Earth History.—Lectures Notes Earth Sci.,30, 305–324, 7 Figs., Berlin (Springer)CrossRefGoogle Scholar
  30. Kauffman, E.G. (1984): The fabric of Cretaceous marine extinctions.—In:Berggren, W.A. &Van Couvering, J.A. (eds.): Catastrophes in Earth History.—151–246, Princeton (Princeton Univ. Press)Google Scholar
  31. Kauffman, E.G. (1988): The dynamics of marine stepwise mass extinctions.— Rev. Espan. Paleont., No. Extraord., 57–71, MadridGoogle Scholar
  32. Lombardini (1921): Sopra alcuni coralli eocenici della Maiella. Mem. geogr. G. Dainelli.Google Scholar
  33. MacLeod, N. &Keller, G. (1991): How complete are Cretaceous/Tertiary boundary sections? A chronostratigraphic estimate based on graphic correlation.—Geol. Soc. Amer. Bull.,103, 1439–1457, 17 Figs., 1 Tab., BoulderCrossRefGoogle Scholar
  34. Masse, J.-P. & Philip, J. (1981): Cretaceous coral-rudistid buildups of France.—In:Toomey, D.F. (ed.): European Fossil Reef Models.—Soc. Econ. Paleont. Mineral. Spec. Publ.,30, 399–426, TulsaGoogle Scholar
  35. Matieucci, R. &Pignatti, J.S. (1991): The Paleocene of the Apulian area (central-eastern Italy).—Rend. Soc. Geol. It.,14, 189–194, RomaGoogle Scholar
  36. Moussavian, E. (1984): Die Gosau- und Alttertiär-Gerölle der Angerberg-Schichten (Höheres Oligozän, Unterinntal, Nördliche Kalkalpen).—Facies,10, 1–86, Pls. 1–11, 4 Figs., 7 Tabs., ErlangenGoogle Scholar
  37. — (1992). On Cretaceous bioconstructions: Composition and evolutionary trends of crust-building associations.—Facies,26, 117–144, Pls. 23–30, ErlangenGoogle Scholar
  38. Moussavian, E. (1993): Facies development of the Eastern Alpine Paleogene with regard to algal associations.—In:Höfling, R., Moussavian, E. & Piller, W. (eds.): Facies development of algae-bearing carbonate sequences in the Eastern Alps.—Mitt. Paläont. Inst. Univ. Wien,367, 27 pp., 4 Figs., 4 Pls., MünchenGoogle Scholar
  39. Moussavian, E. &Vecsei, A. (1995). Paleocene reef sediments from the Maiella carbonate platform, Italy.—Facies,32, 213–222, ErlangenGoogle Scholar
  40. Mutti, M. (1995): Porosity development and diagenesis in the Orfento Supersequence and its bounding unconformities (Late Cretaceous, Maiella, Italy).—In:Budd, D., Harris, P.M. & Saller, A. (eds.): Porosity in Carbonate Strata. Amer. Assoc. Petrol. Geol. Mem.,61, 141–158, TulsaGoogle Scholar
  41. Mutti, M., Bernoulli, D., Eberli, G.P. &Vecsei, A. (1996): Depositional geometries and facies associations in an Upper Cretaceous prograding carbonate platform margin (Orfento Supersequence, Maiella, Italy).—J. Sed. Res.66, 749–765, TulsaGoogle Scholar
  42. Newell, N.D. (1967): Revolutions in the history of life.—In:Albritton, C.C. (ed.): Uniformity and Simplicity.—Geol. Soc. Amer. Spec. Paper,89, 63–91, 10 Figs., BoulderGoogle Scholar
  43. Newell, N.D. (1971): An outline history of tropical organic reefs.—Amer. Museum Nov.,2465, 37 pp., 13 Figs., New YorkGoogle Scholar
  44. Perch-Nielsen, K., McKenzie, J. &He, Q. (1982): Biostratigraphy and isotope stratigraphy and the catastropic extinction of calcareous nannoplankton at the Cretaceous/Tertiary boundary.— Geol. Soc. Amer. Spec. Paper,190, 353–371, BoulderGoogle Scholar
  45. Pignatti, J.S. (1994): Biostratigrafia dei macroforaminiferi del Paleogene della Maiella nel quadro delle piattaforme periadriatiche.—Studi Geol. Camerti, No. Speciale “Biostratigrafia dell’Italia centrale”, 359–405, CamerinoGoogle Scholar
  46. Polsak, A. (1985): The boundary between the Cretaceous and Tertiary in terms of the stratigraphy and sedimentology of the biolithic complex in Mt. Medvednica (Northern Croatia).— Acta Geol.,15/1, 1–23, Pls. 1–13, 2 Figs., ZagrebGoogle Scholar
  47. Pujalte, V., Robles, S., Robador, A., Baceta, J.I. & Orue-Etxebarria, X. (1993): Shelf-to-basin Palaeocene paleogeography and depositional sequences, western Pyrenees, north Spain.—In:Posamentier, H.W., Summerhayes, C.P., Haq, B.U. & Allen, G.P. (eds.): Sequence Stratigraphy and Facies Associations.—Spec. Publs. Int. Ass. Sediment.,18, 369–395, OxfordGoogle Scholar
  48. Rosen, B.R. & Turnsek, D. (1989): Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary Tertiary boundary.—In:Jell, P.A. & Pickett, J.W. (eds.): Fossil Cnidaria 5.—Mem. Assoc. Australasian Palaeont.,8, 355–370, 3 Figs., 1 Tab., BrisbaneGoogle Scholar
  49. Sanders, D. (1994): Carbonate platform growth and erosion: The Cretaceous to Tertiary of Montagna della Maiella, Italy.— Diss. Eidg. Techn. Hochschule Zürich, 122 p., ZürichGoogle Scholar
  50. Scheibner, E. (1968): Contribution to the knowledge of the Paleogene reef-complexes of the Myjava-Hricov-Haligovka zone (West Carpathians).—Mitt. Bayer. Staatssamml. Paläont. Hist. Geol.,8, 67–97, 14 Figs., 1 Tab., Pls. 4–7, MünchenGoogle Scholar
  51. Schlager, W. (1981) The paradox of drowned reefs and carbonate platforms.—Geol. Soc. Am. Bull.,92, 197–211, BoulderCrossRefGoogle Scholar
  52. Schröder, J.H. (1986). Diagenetic diversity in Paleocene coral knobs from the Bir Abu El-Husein, S Egypt.—In:Schröder, J.H. &Purser, B.H. (ed.): Reef Diagenesis.—132–158, Berlin (Springer)Google Scholar
  53. Schuster, F. (1995): Paleoecology of Paleocene corals from the Western Desert, Egypt.—In:Lathuilière, B. & Geister, J. (eds.): Coral Reefs in the Past, Present and Future.—Publs. Serv. Géol. Luxembourg,29, p. 125, LuxembourgGoogle Scholar
  54. Sepkoski, J.J. (1981): A factor analytic description of the Phanerozoic marine fossil record.—Paleobiology,7, 36–53Google Scholar
  55. Sheehan, P.M. (1985): Reefs are not so different—The follow the evolutionary pattern of level-bottom communities.—Geology,13, 46–49, BoulderCrossRefGoogle Scholar
  56. Stanley, S.N. (1984): Marine mass extinctions: a dominant role for temperature.—In:Nitecki, M.H. (ed.): Extinctions, 69–117, Chicago and London (Univ. Chicago Press)Google Scholar
  57. Talent, J. (1988): Organic reef-building: episodes of extinction and symbiosis?—Senckenbergiana Lethaea,69, 315–368, Frankfurt a.M.Google Scholar
  58. Terry, C.E. &Williams, J.J. (1969): The Idris A geoherm and oilfield, Sirte Basin, Libya: Its commercial development, regional Paleocene setting and stratigraphy.—In: Exploration for Petroleum in Europe and North Africa, 31–48, London (Inst. Petroleum)Google Scholar
  59. van Konijnenburg J.-H., Caron, M. & Bernoulli, D. (1996): The Maastrichtian-Danian transition in a carbonate slope setting, Gran Sasso d’Italia, Central Italy. Fourth Meeting of Swiss Sedimentologists, Abstracts, p. 28, FribourgGoogle Scholar
  60. Vecsei, A. (1991): Aggradation und Progradation eines Karbonatplattform-Randes: Kreide bis mittleres Tertiär der Montagna della Maiella, Abruzzen.—Mitt. Geol. Inst. ETH Univ. Zürich N.F.,294, 169 pp., 14 Pls., many Figs., ZürichGoogle Scholar
  61. Vecsei, A., Sanders, D.G.K., Bernoulli, D. & Eberli, G.P. (1996a): Sequence stratigraphy and evolution of the Maiella carbonate platform margin, Cretaceous to Miocene, Italy.— In:De Graciansky, P.C., Jacquin, T & Vail, P.R. (eds.): Mesozoic-Cenozoic Sequence Stratigraphy of Western European Basins.—Soc. Econ. Paleont. Mineral. Spec. Publ. (in press)Google Scholar
  62. Vecsei, A., Moussavian, E. & Turnsek, D. (1996b): Paleocene reef evolution on the Maiella carbonate platform (Italy).—In:Reitner, J., Neuweiler, F. & Gunkel, F. (eds.): Global and Regional Controls on Biogenic Sedimentation, I. Reef Evolution.— Göttinger Arb. Geol. Paläont, SB.2, 175–178, GöttingenGoogle Scholar
  63. Zachos, J.C. &Arthur, M.A. (1986): Paleoceanography of the Cretaceous/Tertiary boundary event: Inferences from stable isotopic and other data.—Paleoceanography,1, 5–26CrossRefGoogle Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1997

Authors and Affiliations

  • Adam Vecsei
    • 1
  • Esmail Moussavian
    • 2
  1. 1.Geologisches InstitutUniversität Freiburg i.Br.Freiburg i.Br.
  2. 2.Institut für Paläontologie und Historische GeologieLudwig-Maximilians-UniversitätMünchen

Personalised recommendations