Facies

, Volume 32, Issue 1, pp 71–108 | Cite as

Controls on modern carbonate sedimentation on warm-temperate to arctic coasts, shelves and seamounts in the Northern Hemisphere: Implications for fossil counterparts

  • Rüdiger Henrich
  • André Freiwald
  • Christian Betzler
  • Beate Bader
  • Priska Schäfer
  • Christian Samtleben
  • Thomas C. Brachert
  • Achim Wehrmann
  • Heinrich Zankl
  • Dietrich H. H. Kühlmann
Article

Summary

In contrast to the well studied tropical carbonate environments, interest in non-tropical carbonate deposition was rather low until the basic ideas of theForamol-concept were outlined byLees & Buller (1972). In the following two decades studies on non-tropical carbonate settings evolved as a new and exciting branch of carbonate sedimentology (seeNelson 1988). This is archieved in a great number of publications dealing on temperate carbonate deposits from numerous coastal and open shelf settings on both hemispheres. The existence of wide extended carbonate depositional systems and even reefal frameworks in Subarctic and Arctic seas which are in focus by our research group made it possible to study modern non-tropical carbonate settings along a latitudinal transect from the warm-temperate Mediterranean Sea to the cold Nordic Seas. Because of increasing seasonality in environmental conditions towards high latitudes, the major controls in biogenic carbonate production can be more clearly addressed in these areas. After the initiation of the priority program “Global and regional controlling processes of biogenic sedimentation-evolution of reefs” by the German Science Foundation four years ago, a set of modern case studies were comparatively analysed specifically with regard to their principle controlling processes:
  1. (1)

    Modern and Holocene coralline algal reefs and rhodolith pavements formed in wave-protected shallow waters along the coast of the Brittany and northern Norway. Their finetuned interaction with herbivores resulted in the development of widespread but low-diverse, slowly growing coralline algal frameworks with high competitive value against the rapid-growing phaeophytic communities.

     
  2. (2)

    The MediterraneanCladocora caespitosa-banks provide an instructive example of non-tropical hermatypic coral framework construction out of the subtropical-tropical coral reef belt.

     
  3. (3)

    The geometry and environmental controls of several kilometer long coral reefs formed by the azooxanthellateLophelia pertusa andMadrepora oculata are studied in more than 250 m water depth in mid and northern Norway.

     
  4. (4)

    ModernBryomol-sediments are widely distributed on non-tropical deeper shelf settings. The formational processes converting bryozoan-thickets into huge piles of sand and gravel dunes are recently studied on the outer shelves off northern Brittany and off northern Norway.

     
  5. (5)

    Arctic sponge-bryozoan buildups on the seamount Vesterisbank in the Greenland Sea and

     
  6. (6)

    balanid-dominated open shelf carbonates on the Spitsbergen Bank form the Arctic endmembers of modernForamol-deposits. Seasonalice-edge phytoplankton blooms and efficient mechanisms of pelagic-benthic food transfer characterize these depositional settings. Fossil counterparts of each of these modern case studies are discussed in context with their paleoceanographic and environmental settings.

     

Keywords

Non-tropical carbonates Environmental control Seasonality Oceanography Foramol Bryomol Coralline algae Maerl Balanids Bryozoa Lophelia-reefs Cladocora banks Kelp forests Recent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, E.F. (1959): Zur Kenntnis der marinen Höhlenfauna unter besonderer Berücksichtigung der Anthozoen. Ergebnisse der Österreichischen Tyrrhenia-Expedition, 1952, part V.—Pubbl. Staz. Zool.,30 (suppl.), 1–94, NeapelGoogle Scholar
  2. Adey, W. H. &McKibbin, D. L. (1970): Studies on the maerl speciesPhymatolithon calcareum (Pallas) nov. comb. andLithothamnium coralloides Crouan in the Ria de Vigo.— Botanica Marina,13, 100–106, HamburgGoogle Scholar
  3. Akpan, E. B. &Farrow, G. E. (1984): Depth and deposition of Early Holocene raised sediments at Irvine Island deduced from algal borings in mollusc shells.—Scottish J. Geol.,20/2, 237–247, EdinburghGoogle Scholar
  4. Akpan, E. B. &Farrow, G. E. (1985): Shell bioerosion in highlatitude low-energy environments: Firths of Clyde and Lorne, Scotland.—Marine Geology,67, 139–150, AmsterdamGoogle Scholar
  5. Alexandersson, T. (1972): Micritization of carbonate particles: Processes of precipitation and dissolution in modern shallowmarine sediments.—Bull. Geol. Inst. Univ. Upsala N.S.37/, 201–236, UpsalaGoogle Scholar
  6. — (1974): Carbonate cementation in coralline algal nodules in the Skagerrak, Noth Sea: Biochemical precipation in undersaturated waters.—J. Sed. Petrol.,44/1, 7–26, TulsaGoogle Scholar
  7. Andruleit, H. (1991): Fazies, Genese und Verbreitung arktischer Karbonate auf dem Westspitzbergenschelf.—unveröffentl. Diplomarbeit, Christian-Albrechts-Universität, KielGoogle Scholar
  8. Bagdasaryan, K. G. (1983): Ecological systems of the Sarmatian Sea.—Paleont. Journal,1983/4, 1–9, MoskowGoogle Scholar
  9. Barnes, R. S. K. &Mann, K. H. (1980): Fundamentals of aquatic ecosystems.—229 p., Oxford (Blackwell)Google Scholar
  10. Beauchamp, B. (1994): Permian climatic cooling in the Canadian Arctic.—In:Klein, G. D. (ed.): Pangea: Paleoclimate, tectonics, and sedimentation during acceretion, zenith, and break-up of a supercontinet.—Geol. Soc. Am., Spec. Paper,288, 229–246, WashingtonGoogle Scholar
  11. Beliemo, S. (1974): The compound and intermediate wall structures in Cibicidinae (foramonifera) with remarks on the radial and granular wall structures.—Bull. Geol. Inst. Univ. Uppsala N. S.5, 1–11, UpsalaGoogle Scholar
  12. Bernecker, M. &Weidlich, O. (1990): The Danian (Paleocene) Coral Limestone of Fakse, Denmark: a model for ancient aphotic, azooxanthellate coral mounds.—Facies,22, 103–138, ErlangenGoogle Scholar
  13. Betzler, C., &Chaproniere, G. C. H. (1993): Palaeogene and Neogene larger formatinifers from the Queensland Plateau: biostratigraphy and environmental significance.—Proc. Ocean Drilling Program, Sci. Res.133, 51–66 College StationGoogle Scholar
  14. Betzler, C., Kroon, D., Gartner, S. &Wel, W. (1993): Eocene to Miocene chronostratigraphy of the Queensland Plateau: control of climate and sea level on platform evolution.—Proc. Ocean Drilling Program, Sci. Res.,133, 281–289, College StationGoogle Scholar
  15. Bickert, T. &Henrich, R. (1989): Karbonate nahe der Arktis: Rezente Flachwasserkarbonate auf der Spitzbergenbank (Barentsschelf).—Geol. Pal. Mitt. Innsbruck,16, 4 InnsbruckGoogle Scholar
  16. Bjørlykke, K., Bue, B. &Elverhøi, A. (1978): Quaternary sediments in the north-western part of the Barents Sea and their relation to the underlying Mesozoic bedrock.—Sedimentology,25, 227–246, OxfordGoogle Scholar
  17. Boillot, G. (1965): Organogenic gradients in the study of neritic deposits of biological origin: The example of the western English Channel.—Marine Geology,3, 359–367, AmsterdamGoogle Scholar
  18. Boreen, T., James, N.P., Wilson, C. &Heggie, D. (1993): Surficial cool-water carbonate sediments on the Otway continental margin, southeastern Australia.—Marine Geology,112, 35–56, AmsterdamGoogle Scholar
  19. Boreen, T. D. &James, N. P. (1993): Holocene sediment dynamics on a cool-water carbonate shelf: Otway, southeastern Australia. —J. Sed. Petrol.63/4, 574–588, TulsaGoogle Scholar
  20. Bornhold, B. D. &Yorath, C. J. (1984): Surficial geology of the continental shelf, northwestern Vancouver Island.—Marine Geology,5, 89–112, AmsterdamGoogle Scholar
  21. Bosence, D. W. J. (1976): Ecological studies on two unattached coralline algae from western Ireland.—Palaeontology,19/2, 365–395, LondonGoogle Scholar
  22. — (1980): Sedimentary facies, production rates and facies models for recent coralline algal gravels, Co. Galway, Ireland— Geological Journal,15/2, 91–111, LiverpoolGoogle Scholar
  23. — (1983): Coralline algal reef frameworks.—Journal of the Geological Society London,140, 365–376, LondonGoogle Scholar
  24. Brachert, T. C., Betzler, C., Davies, P. J. &Feary, D. A. (1993): Climatic change: control of carbonate platform development (Eocene—Miocene, Leg 133, northeasten Australia).—Proc. ODP, Scientific Results,133, 291–300, College StationGoogle Scholar
  25. Broecker, W. S., Bond, G., Klas, M., Bonani, G. &Wolfli, W. (1990): A salt oscillator in the glacial North Atlantic? 1. The concept.—Paleoceanography,5, 469–477, WashingtonGoogle Scholar
  26. Bromley, R. G. &Hanken, N.-M. (1981): Shallowmarine bioerosion at Vardø, arctic Norway.—Bull. geol. Soc. Denmark,29, 103–109, CopenhagenGoogle Scholar
  27. Brookfield, M. E. (1988): A mid-Ordovician temperate carbonate shelf—the Black River and Trenton Limestone Groups of southern Ontario, Canada.—Sedimentary Geology,60, 137–153, AmsterdamGoogle Scholar
  28. Bugge, T. (1980): Øvre lags geologi på kontinentalsokkelen utenfor Møre og Trøndelag.—IKU-Report,104, 1–44, TrondheimGoogle Scholar
  29. Bullivant, J. S. &Dearborn, J. H. (1967): The fauna of the Ross Sea.—New Zealand Dep. Sci. Industr. Res. Bull.,176, 9–77, WellingtonGoogle Scholar
  30. Burne, R. V. &Colwell, J. B. (1982): Temperate carbonate sediments of northern Spencer Gulf, South Australia: a high salinity ‘foramol’ province.—Sedimentology,29, 223–238, OxfordGoogle Scholar
  31. Cabioch, J. (1969): Les fonds de maerl de la Baie de Morlaix et leur peuplement végétal.—Cahiers Biologique Marine,9, 33–55, ParisGoogle Scholar
  32. Carannante, G., Esteban, M., Milliman, J. D. &Simone, L. (1988): Carbonate lithofacies as paleolatitude indicators: problems and limitations.—Sedimentary Geology,60, 333–346, AmsterdamGoogle Scholar
  33. Chave, K. E. (1967): Recent carbonate sediments—an unconventional view.—Jour. Geol. Educat.,15/5, 200–204, WashingtonGoogle Scholar
  34. Coates, A. G. &Kauffman, E. G. (1973): Stratigraphy paleontology, and paleoenvironment of a Cretaceous coral thicket, Lamy, New Mexico.—Journal of Paleontology,47, 953–968, TulsaGoogle Scholar
  35. Collins, L. B. (1988): Sediments and history of the Rottnest Shelf, southwest Australia: a swell-dominated, non-tropical carbonate margin.—Sedimentary Geology,60, 15–49, AmsterdamGoogle Scholar
  36. Conolly, J. R. &von der Borch, C. C. (1967): Sedimentation and physiography of the sea floor south of Australia.—Sedimentary Geology,1, 181–220, AmsterdamGoogle Scholar
  37. Conway, K. W., Barrie, J. V., Austin, W. C. &Luternauer, J. L. (1991): Holocene sponge biohems on the western Canadian continental shelf.—Continental Shelf Research,11/8–10, 771–790, OxfordGoogle Scholar
  38. Davies, P. J. (1989): The evolution of the carbonate platforms of northeast Australia.—SEPM, Special Publ.,44, 233–258, TulsaGoogle Scholar
  39. Dayton, P. K., Robilliard, G. A., Paine, R. T. &Dayton, L. B. (1974) Biological accomodation in the benthic community at McMurdo Sound, Antarctica.—Ecol. Monogr.,44, 105–128, DurhamGoogle Scholar
  40. Domack, E. W. (1988): Biogenic facies in the Antarctic glacimarine environment: basis for a polar glacimarine summary.—Marine Geology,63, 357–372, AmsterdamGoogle Scholar
  41. Dons, C. (1935): Zoologische Notizen XXIX. Die Verbreitung von Steinkorallen in West-Finnmark.—Det Kongelige Norske Videnskabers Selskab, Forhandl.,8/18, 57–60, TrondheimGoogle Scholar
  42. — (1944): Norges korallrev.—Det Kongelige Norske Videnskabers Selskab, Forhandlinger,16, 37–62, TrondheimGoogle Scholar
  43. Eide, L. I. (1978): Ocean currents on the Halten and Malangsgrunnen banks.—IKU-Report,97, 1–302, TrondheimGoogle Scholar
  44. Eilertsen, H. C., Falk-Petersen, S., Hopkins, C. C. E. &Tande, K. (1981): Ecological investigations on the plankton community of Balsfjorden, northern Norway.—Sarsia,66: 25–34, BergenGoogle Scholar
  45. Emery,K. O. (1963): Organic transportation of marine sediments. —In:Hill,M. N. (ed.): The Sea,3.—776-793, New York (Interscience Publishers)Google Scholar
  46. Emery, K. O. &Tschudy, R. H. (1941): Transportation of rock by kelp.—Bull. geol. Soc. America,52, 855–862, BoulderGoogle Scholar
  47. Estes, J. A. &Steinberg, P. D. (1988): Predation, herbivory, and kelp evolution.—Paleobiology,14/1, 19–36, ChicagoGoogle Scholar
  48. Eyles, N. &Lagoe, M. B. (1989): Sedimentology of shell-rich deposits (coquinas) in the glaciomarine upper Cenozoic Yakataga Formation, Middleton Island, Alaska.—Geol. Soc. Am. Bull.,101, 129–142, BoulderGoogle Scholar
  49. Fagerstrom, J. A. (1987): The evolution of reef communities.— 600 pp., New York (Wiley)Google Scholar
  50. Farnham, W. F. &Jephson, N. A. (1977): A survey of the maerl beds of Falmouth (Cornwall).—British Physcological Journal,12, 119, GlasgowGoogle Scholar
  51. Farrow, G. E. &Fyfe, J. A. (1988): Bioerosion and carbonate mud production on high-latitude shelves.—Sedimentary Geology,60, 281–297, AmsterdamGoogle Scholar
  52. Farrow, G. E., Allen, N. H. &Akpan, E. B. (1984): Bioclastic carbonate sedimentation on a high-latitude, tide-dominated shelf: northeast Orkney Island, Scotland.—Journal of Sedimentary Petrology,54/2, 373–393, TulsaGoogle Scholar
  53. Farrow, G. E., Cucci, M. &Scoffin, T. P. (1978): Calcareous sediments on the nearshore continental shelf of western Scotland. —Proc. Roy. Soc. Edinburgh76B, 55–75, EdinburghGoogle Scholar
  54. Fischer, G. (1989): Stabile Kohlenstoff-Isotope in partikulärer organischer Substanz aus dem Südpolarmeer (Atlantischer Sektor).—Ph.D.-Thesis, Ber. Fachbereich Geowiss, Bremen University,5, 161 pp, BremenGoogle Scholar
  55. Flügel, E. (1981): Paleoecology and facies of Upper Triassic reefs in the Northerm Calcareous Alps.—In:Toomey, D. F. (ed.): European fossil reef models.—Soc. Econ. Paleont. Miner., Spec. Publ., 30, 291–359, TulsaGoogle Scholar
  56. Forester,R. M.,Sandberg,P. A. &Anderson,T. F. (1973): Isotopic variability of cheilostome bryozoan skeletons.—In:Larwood,P. (ed.): Living and fossil bryozoa.—79-94, London (Academic Press)Google Scholar
  57. Frakes, L. A. (1979): Climates throughout geologic time.—310 pp, Amsterdam (Elsevier)Google Scholar
  58. Frederiksen, R., Jensen, A. &Westerberg, H. (1992): The distribution of the scleractinian coralLophelia pertusa around the Faroe Islands and the relation to internal tidal mixing.—Sarsia,77, 157–171, BergenGoogle Scholar
  59. Freiwald, A. (1993a): Subarktische Kalkalgenriffe im Spiegel hochfrequenter Meeresspiegelschwankungen und interner biologischer Steuerungsprozesse.—Dissertationsschrift, Universität Kiel (in preparation for publication in Contributions to Sedimentology).Google Scholar
  60. — (1993b): Coralline algal maerl frameworks—islands within the phaeophytic kelp belt.—Facies,29, 133–148, ErlangenGoogle Scholar
  61. Freiwald, A. (1995): Bacteria-induced carbonate degradation: a taphonomic case study onCibicides lobatulus from a high-boreal carbonate setting.—Palaios (published in 1995)Google Scholar
  62. Freiwald, A. (in press): Sedimentological and biological aspects in the formation of branched rhodoliths in northern Norway.— Österreichische Beiträge zur Paläontologie (ISRS Conf. Volume), WienGoogle Scholar
  63. Freiwald, A. &Henrich, R. (1994): Reefal coralline algal buildups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality.— Sedimentology,41, 963–984, OxfordGoogle Scholar
  64. Freiwald, A., Henrich, R., Schäfer, P. &Willkomm, H. (1991): The significance of high-boreal to subarctic maerl deposits in northern Norway to reconstruct Holocene climatic changes and sea level oscillations.—Facies,25, 315–340, ErlangenGoogle Scholar
  65. Freiwald, A., Röpstorf, P. & Meggers, H. (1994): Boreal shallow water carbonates.—In:Suess, E., Kremling, K. & Mienert, J. (eds.), Nordatlantik 1993, Meteor Cruise No. 26, Meteor Berichte,94/4, 138–142, HamburgGoogle Scholar
  66. Friebe, J. G. (1994): Serpulid-bryozoan-foraminiferan biostromes controlled by temperate climate and reduced salinity: Middle Miocene of the Styrian Basin, Austria.—Facies,30, 51–62, ErlangenGoogle Scholar
  67. Gazdzicki, A. (1984): TheChlamys coquinas in glacio-marine sediments (Pliocene) of King George Island, West Antarctica. —Facies,10, 145–152, ErlangenGoogle Scholar
  68. Giraud, G. &Cabioch, J. (1983): Inclusions cytoplasmiques remarquables chez les Coralinacées.—Annales des Sciences Naturelles, Botanique, Ser.13/5, 29–43, ParisGoogle Scholar
  69. Gischler, E., Gräfe, K.-U. &Wiedmann, J. (1994): The Upper CretaceousLacazina Limestone in the Basco-Cantabrian and Iberian Basins of northern Spain: Cold-water grain associations in warm-water environments.—Facies,30, 209–246, ErlangenGoogle Scholar
  70. Golikov, A. N. &Scarlato, O. A. (1973): Comparative characteristics of some ecosystems of the upper regions of the shelf in tropical, temperate and arctic waters.—Helgoländer wiss. Meeresuntersuchungen,24, 219–234, HamburgGoogle Scholar
  71. Graf, G. (1989): Benthic-pelagic coupling in the deep-sea benthic community.—Nature,341, 437–439, LondonGoogle Scholar
  72. Hagen, N. T. (1983): Destructive grazing of kelp beds by sea urchins in Vestfjorden, northern Norway.—Sarsia,68, 177–190, BergenGoogle Scholar
  73. Hallock, P. &Schlager, W. (1986): Nutrient excess and the demise of coral reefs and carbonate platforms.—Palaios,1, 389–398, TulsaGoogle Scholar
  74. Henrich, R. (1983): Der Wettersteinkalk am Nordwestrand des tirolischen Bogens in den Nördlichen Kalkalpen: der jüngste Vorstoß einer Flachwasserplattform am Beginn der Obertrias. —Geologica et Palæontologica,17, 137–177, MarburgGoogle Scholar
  75. Henrich, R., Hartmann, M., Reitner, J., Schäfer, P., Freiwald, A., Steinmetz, S., Dietrich, P. &Thiede, J. (1992): Facies belts and communities of the arctic Vesterisbanken Seamount (Central Greenland Sea).—Facies,27, 71–104, ErlangenGoogle Scholar
  76. Henrich, R., Reitner, J. & Wehrmann, A. (1993): Cold water shelf carbonates and lag deposits and associated living benthic communities: Spitsbergen Bank.—In:Pfannkuche, O., Dunker, J. C., Graf, G., Henrich, R., Thiel, H. & Zeitschel, B. (eds.): Nordatlantik 92, Meteor-Reise Nr. 21, Meteor Berichte,93–4, 176–180, HamburgGoogle Scholar
  77. Hovland, M. (1990): Docarbonate reefs form due to fluid seepage? —Terra Nova,2, 8–18, OxfordGoogle Scholar
  78. Jackson, G. A. &Winant, C. D. (1983): Effect of a kelp forest on coastal currents.—Continental Shelf Research,2/2, 75–80, OxfordGoogle Scholar
  79. James, N. P. &Bone, Y. (1991): Origin of a cool-water, Oligo-Miocene deep shelf limestone, Eucla Platform, southern Australia. —Sedimentary Geology,60, 323–341, AmsterdamGoogle Scholar
  80. James, N. P. &von der Borch, C. C. (1991): Carbonate shelf edge off southern Australia: a prograding open-platform margin.— Geology,19, 1005–1008, BoulderGoogle Scholar
  81. James, N. P., Bone, Y., von der Borch, C. C., Gostin, V. A. (1992): Modern carbonate and terigenous clastic sediments on a cool water, high energy, mid-latitude shelf: Lacapede, southern Australia.—Sedimentology,39, 877–903, OxfordGoogle Scholar
  82. James, N. P., Boreen, T. D., Bone, Y. &Feary, D. (1994): Holocene carbonate sedimentation on the west Eucla Shelf, Great Australian Bight: a shaved shelf.—Sedimentary Geology,90, 161–177, AmsterdamGoogle Scholar
  83. Janssen, R. (1981): Mollusken-Assoziationen und Biotope im norddeutschen Oberoligozän.—Natur und Museum,111/3, 70–78, FrankfurtGoogle Scholar
  84. Jensen, A. &Frederiksen, R. (1992): The fauna associated with the bank-forming deepwater coralLophelia pertusa (Scleractinia) on the Faroe shelf.—Sarsia,77, 53–69, BergenGoogle Scholar
  85. Johnson, C. R., Muir, D. G. &Reysenbach, A. L. (1991a): Characteristic bacteria associated with surfaces of coralline algae: a hypothesis for bacterial induction of marine invertebrate larvae.—Marine Ecology Progress Series,74, 281–294, HalstenbekGoogle Scholar
  86. Johnson, C. R., Sutton, D. C., Olson, R. R. &Giddins, R. (1991b): Settlement of crown-of-thorns starfish: role of bacteria on surfaces of coralline algae and a hypothesis for deepwater recruitment.—Marine Ecology Progress Series,71, 143–162, HalstenbekGoogle Scholar
  87. Jones, B. & Desrochers, A. (1992): Shallow platform carbonates.—In:Walker, R. G. & James, N. P. (eds.): Facies models—response to sea level change.—277–301, (Geological Association of Canada)Google Scholar
  88. Kamp, P. J. J., Harmsen, F. J., Nelson, C. S. &Boyle, S. F. (1988): Barnacle-dominated limestone with giant cross-beds in a nontropical, tide-swept, Pliocene forearc seaway, Hawke's Bay, New Zealand.—Sedimentary Geology,60, 173–195, AmsterdamGoogle Scholar
  89. Kiellman, F. R. (1883): The algae of the Arctic Sea.—Stockholm (Kongl. Boktryckeriet)Google Scholar
  90. Koop, K., Newell, R. C. &Lucas, M. I. (1982): Biodegradation and carbon flow based on kelp (Ecklonia maxima) debris in a sandy beach microcosm.—Marine Ecology Progress Series,7, 315–326, HalstenbekGoogle Scholar
  91. Koukouras, A. &Kühlmann, D. H. H. (1991): Rasenkorallen als Biotope in der Ägäis.—Naturwiss. Rundschau,44, 444–445, StuttgartGoogle Scholar
  92. Kremer, B. P. (1980): Stoffwechselstrategie und Produktivität der großen Meeresalgen.—Naturwiss. Rundschau,33/4, 135–142, StuttgartGoogle Scholar
  93. Kudrass, H.-R. (1974): Experimental study of nearshore transportation of pebbles with attached algase.—Marine Geology,16, M9-M12, AmsterdamGoogle Scholar
  94. Kühlmann, D. H. H. (1985a): The protection role of coastal forests on coral reefs.—Proc. Fifth Int. Coral Reef Congr. Tahiti,6, 503–508, MooreaGoogle Scholar
  95. — (1985b): Living coral reefs of the world.—185 pp, New York (Arco)Google Scholar
  96. — (1988): The sensitivity of coral reefs to environmental pollution.—Ambio,17, 13–21, StockholmGoogle Scholar
  97. — (1991): Adaptationsmuster hermatypischer Korallen als Grundlage zum Verstädnis der Korallenriffgenese (Kompensationstheorie).—Mitt. Zool. Nus. Berlin,67, 209–218, BerlinGoogle Scholar
  98. Kühlmann, D. H. H., Chintiroglou, H., Koutsobas, D. &Koukouras, A. (1991): Korallenriffe im Mittelmeer?—Naturwiss. Rundschau,44, 316, StuttgartGoogle Scholar
  99. Laborel, J. (1961): Sur un cas particulier de concretionnement animal concretionnement aCladocora caespitosa L. dans le Golfe de Talante.—Rapp. Comm. Int. Mer Medit.,16, 429–432, ParisGoogle Scholar
  100. Laborel, J. (1987): Marine biogenic constructions in the Mediterranean—a review.—Sci. Rep. Port-Cros natl. Park, France,13, 97–126, ParisGoogle Scholar
  101. Larsonneur, C., Bouysse, P. &Auffret, J.-P. (1982): The superficial sediments of the English Channel and its Western Approaches.—Sedimentology,29, 851–864, OxfordGoogle Scholar
  102. Le Danois, E. (1948): Les profondeurs de la mer.—303 pp, ParisGoogle Scholar
  103. Lees, A. (1975): Possible influence of salinity and temperature on modern shelf carbonate sedimentation.—Marine Geology,19, 159–198, AmsterdamGoogle Scholar
  104. Lees, A. &Buller, A. T. (1972): Modern temperature-water and warm-water shelf carbonate sediments contrasted.—Marine Geology,13, M67-M73, AmsterdamGoogle Scholar
  105. Lemoine, P. (1910): Rèpartition et mode de vie du maerl (Lithothamnium calcareum) aux environs de Concarneau (Finistère).—Annales de l'Institut Oceanographique Monaco,1, 1–28, ParisGoogle Scholar
  106. Lewis, T. E., Garland, C. D. &McMeekin, T. A. (1985): The bacterial biota on crustose (nonarticulated) coralline algae from Tasmanian waters.—Microbial Ecology,11, 221–230, BerlinGoogle Scholar
  107. Lindberg, D. R. (1976): Marine plant limpets of the northern Pacific: Neogene phylogeny and zoogeography.—Western Society of Malacologists, Annual Report,9, 22–25, Santa BarbaraGoogle Scholar
  108. Littler, M. M., &Littler, D. S. (1985): Deepest known plant life discovered on an uncharted seamont.—Science,227, 57–59, WashingtonGoogle Scholar
  109. Logan, B. W., Harding, J. L., Ahr, W. M., Williams, J. D. &Snead, R. G. (1969): Carbonate sediments and reefs, Yucatan Shelf, Mexico.—Am. Assoc. Petrol. Geol., Mem.,11, 5–198 WashingtonGoogle Scholar
  110. Lüning, K. (1990): Seaweeds—their environment, biogeography, and ecophysiology.—527 p, New York (Wiley-Interscience)Google Scholar
  111. Lüning,K. &tom Dieck,I. (1990): The distribution and evolution of the Laminariles: North Pacific—Atlantic relationships.—In:Garbary,D.J. &South,G.R. (eds.): Evolutionary biogeography of the marine algae of the North Atlantic.—187-204, Berlin (Springer)Google Scholar
  112. Martin-Jezequel, V. (1983): Facteurs hydrologiques et phytoplancton en baie de Morlaix (Manche Occidentale).—Hydrobiologia,102, 131–143, Den HaagGoogle Scholar
  113. Mayr, F. (1953): Durch Tange verfrachtete Gerölle bei Solnhofen und anderwärts.—Geol. Blätter v. NO-Bayern,3, 113–121, ErlangenGoogle Scholar
  114. McKenna,M. C. (1983): Cenozoic paleogeography of North Atlantic land bridges.—In:Bott,H. P.,Saxov,S.,Talwani,M. &Thiede,J. (eds.): Structure and development of the Greenland-Scotland ridge.—351-399, New York (Plenum Press)Google Scholar
  115. Mikkelsen, N., Erlenkeuser, H., Killingley, J. S. &Berger, W. H. (1982): Norwegian corals: radiocarbon and stable isotopes inLophelia pertusa.—Boreas,11, 163–171, OsloGoogle Scholar
  116. Milliman,J. D. (1977): Role of calcareous algae in Atlantic continental margin sedimentation.—In:Flügel,E. (ed.): Fossil Algae.—232-247, Berlin (Springer)Google Scholar
  117. Mörner, N.-A. (1979): The Fennoscandian uplift and Late Cenozoic geodynamics: geological evidence.—GeoJournal,3/3, 287–318, DordrechtGoogle Scholar
  118. Morri, C., Peirano, C., Bianchi, N. &Sassarini, M. (1994): Present-day bioconstructions of the hard coral,Cladocora caespitosa (L.) (Anthozoa, Scleractinia), in the eastern Ligurian Sea (NW Mediterranean).—Biol. Mar. Medit.,1, 371–372, San RemoGoogle Scholar
  119. Morse, A. N. C. (1991): How do planktonic larvae know where to settle?—American Scientist,79/2, 154–167, New HavenGoogle Scholar
  120. Moussavian, E. (1992): On Cretaceous bioconstructions: Composition and evolutionary trends of crust-building associations.—Facies,26, 117–144, ErlangenGoogle Scholar
  121. Muscatine, L. &Porter, J. W. (1977): Reef corals: mutualistic symbioses adapted to nutrient-poor environments.—Bioscience,27, 454–460, ArlingtonGoogle Scholar
  122. Møller, J. J. (1989): Geometric simulation and mapping of Holocene relative sea-level changes in northern Norway.—Journal of Coastal Research,5/3, 403–417, Fort LauderdaleGoogle Scholar
  123. Nebelsick, J. H. (1989): Temperate water carbonate facies of the Early Miocene Paratethys (Zogelsdorf Formation, Lower Austria).—Facies,21, 11–40, ErlangenGoogle Scholar
  124. Nelson, C. S. (1988): An introductory perspective on non-tropical shelf carbonates.—Sedimentary Geology,60: 3–12, AmsterdamGoogle Scholar
  125. Nelson, C. S. &Bornhold, B. D. (1983): Temperate skeletal carbonate sediments on Scott Shelf, northwestern Vancouver Island, Canada.—Marine Geology,52, 241–266, AmsterdamGoogle Scholar
  126. Nelson, C. S., Hancock, G. E. &Kamp, P. J. J. (1982): Shelf to basin, temperature skeletal carbonate sediments, Three Kings Plateau, New Zealand.—J. Sed. Petrol.,52, 717–732, TulsaGoogle Scholar
  127. Nelson, C. S., Hyden, F. M., Keane, S. L., Leask, W. L. &Gordon, D. P. (1988a): Application of zoarial growth-form studies in facies analysis of non-tropical carbonate deposits in New Zealand.—Sedimentary Geology,60, 301–322, AmsterdamGoogle Scholar
  128. Nelson, C. S., Keane, S. L. &Head, P. S. (1988b): Non-tropical carbonate deposits on the modern New Zealand shelf.—Sedimentary Geology,60, 71–94, AmsterdamGoogle Scholar
  129. Pätzold, J., Ristedt, H. &Wefer, G. (1987): Rate of growth and longevity of a large colony ofPentapora foliacea (Bryozoa) recorded in their oxygen isotope profiles.—Marine Biology,96, 535–538, AmsterdamGoogle Scholar
  130. Parker, B. C. &Dawson, E. Y. (1965): Non-calcareous marine algae from California Miocene deposits.—Nova Hedwigia,10, 273–295, StuttgartGoogle Scholar
  131. Pearce, C. M. &Scheibling, R. E. (1990): Induction of metamorphosis of larvae of the green sea urchinStrongylocentrotus droebachiensis, by coralline red algae.—Biol. Bull.,179, 304–311, LancasterGoogle Scholar
  132. Pirazolli, P. A. (1991): World Atlas of Holocene sea-level changes.—300 pp., Amsterdam (Elsevier)Google Scholar
  133. Poizat, C. (1970): Hydrodynamisme et sédimentation dans le golfe de Gabès (Tunisie).—Tethys,2/1, 267–295Google Scholar
  134. Potin, P., Floc'h, J. Y., Augris, C., &Cabioch, J. (1990): Annual drowth rate of the calcareous red algaLithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France.—Hydrobiologia,204/205, 263–267, Den HaagGoogle Scholar
  135. Pueschel, C. M. (1992): An ultrastructural survey of the diversity of crystalline, proteinaceous inclusions in red algal cells.—Phycologia,21/6, 489–499, OxfordGoogle Scholar
  136. Rao, C. P. (1981): Criteria for recognition of cold-water carbonate sedimentation: Berriedale Limestone (Lower Permian), Tasmania, Australia.—J. Sed. Petrol.51/2, 441–506, TulsaGoogle Scholar
  137. Rao, C. P. (1988): Oxygen and carbon isotope composition of cold-water Berriedale Limestone (Lower Permian), Tasmania, Australia.—Sedimentary Geology,60, 221–231, AmsterdamGoogle Scholar
  138. Reiss, Z. &Hottinger, L. (1984): The Gulf of Aqaba. Ecological micropalaeontology.—345 pp., Berlin (Springer)Google Scholar
  139. Rey, F. & Loeng, H. (1985): The influence of ice and hydrographic conditions on the development of phytoplankton in the Barents Sea.—In:Gray, J. S. & Christiansen, M. E. (eds.): Marine biology of polar regions and effects of stress on marine organisms.—49–63 (Wiley)Google Scholar
  140. Rodgers, J. (1957): The distribution of marine carbonate sediments: a review.—Soc. Econ. Paleont. Miner, Spec. Pub.,5, 2–13, TulsaGoogle Scholar
  141. Rodriguez-Perea, A. (1984): La Formacion calcarenitica de Sant Elm: un ejemplo de plataforma mixta terrigeno-carbonatada.—Publ. Geol. Univ. Autonoma de Barcelona: 399–417, BarcelonaGoogle Scholar
  142. Rokoengen, K., Rise, L., Bugge, T. & Sættem, J. (1988): Bedrock geology on the Mid Norwegian continental shelf, Map in scale 1∶1000000.—IKU-Report,118, TrondheimGoogle Scholar
  143. Sarnthein, M. (1973): Quantitative Daten über benthische Karbonatsedimentation in mittleren Breiten.—Veröffentl. Univ. Innsbruck, Festschrift Heißel,86, 267–279, InnsbruckGoogle Scholar
  144. Schäfer,P. (1994): Growth strategies of arctic bryozoa in the Nordic seas.—In:Hayward,P. J.,Ryland,J. S. &Taylor,P. D. (eds.): Biology and paleobiology of bryozoans.—173-176, Fredensborg (Olsen & Olsen)Google Scholar
  145. Schäfer, P., Andrulett, H., Freiwald, A. & Munnecke, A. (1991): Boreale Flachwasserkarbonate.—In:Gerlach, S. A. & Graf, G. (eds.): Europäisches Nordmeer, Reise Nr. 13.—Meteor-Berichte,91–2, 23–35, HamburgGoogle Scholar
  146. Schlager, W. (1989): Drowning unconformities on carbonate platforms.—In:Crevello, P. D., Wilson, J. L., Sarg, J. F., Read, J. F. (eds.): Controls on carbonate platform and basin development.—Soc. Econ. Paleont. Miner., Spec. Pub.,44: 15–25, TulsaGoogle Scholar
  147. Schlanger, S. O. & Konishi, K. (1975): The geographic boundary between the coral-algal and the bryozoan-algal limestone facies: A paleolatitude indicator.—IXInt. Congress of Sedimentology, 187–190, NiceGoogle Scholar
  148. Schmerhorn, L. J. G. (1974): Late Precambrian mixtites: glacial and/or nonglacial? American Journal of Science,274, 673–824, New HavenGoogle Scholar
  149. Schmidt, H. &Freiwald, A. (1993): Rezente gesteinsbohrende Kleinorganismen des norwegischen Schelfs.—Natur und Museum,123/5, 149–155, FrankfurtGoogle Scholar
  150. Scoffin, T. P. (1988): The environments of production and deposition of calcareous sediments on the shelf west of Scotland.—Sedimentary Geology,60, 107–124, AmsterdamGoogle Scholar
  151. Scoffin, T. P. &Bowes, G. E. (1988): The facies distribution of carbonate sediments on Porcupine Bank, northeast Atlantic.—Sedimentary Geology,60, 125–134, AmsterdamGoogle Scholar
  152. Scoffin, T. P., Alexandersson, E. T., Bowes, G. E., Clokie, J. J., Farrow, G. E. &Milliman, J. D. (1980): Recent, temperate, sub-photic, carbonate sedimentation: Rockall Bank, northeast Atlantic.—J. Sed. Petrol.,50/2, 331–356, TulsaGoogle Scholar
  153. Seifer, B. (1984): Strömungs-und Sedimentationsexperimente mit einem Schill aus dem Ärmelkanal.—Unpubl. Dissertation, Geol. Inst. Univ. MarburgGoogle Scholar
  154. Sheath, R. G., Hellebust, J. A. &Sawa, T. (1981): Ultrastructure of the floridean starch granule.—Phycologia20/3, 292–297, OxfordGoogle Scholar
  155. Shizuo, T., Domning, D. P. &Saito, T. (1986):Drusisiren dewana n. sp. (Mammalia: Sirenia), a new ancestor ofSteller's sea cow from the Upper Miocene of Yamagata prefecture, northeastern Japan.—Trans. Proc. Palaeont. Soc. Japan,141, 293–321, TokioGoogle Scholar
  156. Shumway, G. A. (1953): Rafted pebbles from the deep ocean off Baja California.—J. Sed. Pet.23/2, 24–33, TulsaGoogle Scholar
  157. Simone, L. &Carannante, G. (1988): The fate of foramol (“temperate-Type”) carbonate platforms.—Sedimentary Geology,60, 341–354, AmsterdamGoogle Scholar
  158. Skjoldal, H. R., Hassel, A., Rey, F. & Loeng, H. (1987): Spring phytoplankton development and zooplankton reproduction in the central Barents Sea in the period of 1979–1984.—In:Loeng, H. (ed.): The effect of oceanographic conditions on distribution and population dynamics of commercial fish stocks in the Barents Sea.—Proc. of the 3rd Soviet-Norwegian SymposiumGoogle Scholar
  159. Smetacek, V. (1991): Die Primäproduktion der marinen Plankton-Algen.—Spektrum der Wissenschaft, 12/1991, 52–63, HeidelbergGoogle Scholar
  160. Smith, A. M. (1988): Preliminary steps toward formation of a generalized budget for cold-water carbonates.—Sedimentary Geology,60, 323–331, AmsterdamGoogle Scholar
  161. Smith, A. M. &Nelson, C. S. (1994a): Calcification rates of rapidly colonising bryozoans in Hauraki Gulf, northern New Zealand.—New Zealand Journal of Marine and Freshwater Research,28, 227–234, WellingtonGoogle Scholar
  162. Smith,A. M. &Nelson,C. S. (1994b): Selectivity in sea-floor processes: taphonomy of bryozoans.—In:Hayward,P. J.,Ryland,J. S. &Taylor P. D. (eds.), Biology and paleobiology of bryozoans.—177-180, Fredensborg (Olsen & Olsen)Google Scholar
  163. Smith, A. M., Nelson, C. S. &Danaher, P. J. (1992): Dissolution behaviour of bryozoan sediments: taphonomic implications of nontropical shelf carbonates.—Palaeogeography, Palaeoclimatology, Paleaoecology,93, 213–226, AmsterdamGoogle Scholar
  164. Soot-Ryen, T. (1934): Hydrographical investigations in the Tromsø District 1930.—Tromsø Mus. Årshefter,52, 1–78, TromsøGoogle Scholar
  165. Stam, W. T., Bot, P. V. M., Boele-Bos, S. A., van Rooji, J. M. &van den Hoek, C. (1988): Single-copy DNA-DNA hybridizations among five species ofLaminaria (Phaeophyceae): phylogenetic and biogeographic implications.—Helgol. Meeresunters.,42, 251–267, HamburgGoogle Scholar
  166. Stanley, G. D. (1979): Triassic carbonate buildups of western North America: comparisons with the alpine Triassic of Europe.—Riv. Italiana di Paleontologia,85, 877–894, MilanoGoogle Scholar
  167. — (1981): Early history of scleractinian corals and its geological consequences.—Geology,9, 507–511, BoulderGoogle Scholar
  168. Stanlby, G. D. &Cairns, S. D. (1988): Constructional azooxanthellate coral communities: an overview with implications for the fossil record.—Palaios,3, 233–242, TulsaGoogle Scholar
  169. Steneck,R. S. (1985): Adaptations of crustose coralline algae to herbivory: Patterns in space and time.—In:Toomey,D. F. &Nitecki,M. H. (eds.): Paleoalgology.—352-366, Berlin (Springer)Google Scholar
  170. Sundby, S. (1984): Influence of bottom topography on the circulation at the continental shelf off northern Norway.—Fiskdir. Skr. Ser. Havunder.17, 501–519, BergenGoogle Scholar
  171. Sælen, O. H. (1950): the hydrography of some fjords in northern Norway.—Tromsø Museums Årshefter,70/1, 1–101, TromsøGoogle Scholar
  172. Taviani, M., Reid, D. E. &Anderson, J. B. (1993): Skeletal and isotopic composition and paleoclimatic significance of Late Pleistocene carbonates, Ross Sea, Antarctica. J. Sed. Pet.,63/1, 84–90, TulsaGoogle Scholar
  173. Teichert, C. (1958): Cold- and deep-water coral banks.—American Association of Petroleum Geologists, Bulletin,42/5, 1064–1082, TulsaGoogle Scholar
  174. Thomsen, E. &Vorren, T. O. (1986): Macrofaunal palaeoecology and stratigraphy in Late Quaternary shelf sediments off northern Norway.—Palaeogeography, Palaeoclimatology, Paleaoecology,56, 103–150, AmsterdamGoogle Scholar
  175. Van der Laan, J. D. &Hogeweg, P. (1992): Waves of crown-of-thorns starfish outbreaks—where do they come from?—Coral Reefs,11, 207–213, BerlinGoogle Scholar
  176. Van Wagoner, N. A., Mudie, P. J., Cole, F. E. &Daborn, G. (1989): Siliceous sponge communities, biological zonation, and recent sea-level change on the Arctic margin: Ice island results.—Can. J. Earth Sci.,26, 2341–2355, MontrealGoogle Scholar
  177. Voigt, E. (1966): Die Erhaltung vergänglicher Organismen durch Abformung infolge Inkrustation durch sessile Tiere.—N. Jb. Geol. Paläont. Abh.,125, 401–422, StuttgartGoogle Scholar
  178. Voigt,E. (1979): The preservation of slightly or non-calcified fossil bryozoa (Ctenostomata and Cheilostomata) by bioimmuration.—In:Larwood,D. P. &Abbott,M. B. (eds.): Advances in Bryozoology:—541-564, London (Academic Press)Google Scholar
  179. Vorren, T.O. &Elvsborg, A. (1979): Late Weichselian deglaciation and paleoenvironment of the shelf and coastal areas of Troms, north Norway—a review.—Boreas,8, 247–253, OsloGoogle Scholar
  180. Wardlaw, B. R. &Collinson, J. W. (1986): Paleontology and deposition of the Phosphoria Formation.—Contributions to Geology. Univ. of Wyoming,24, 107–142, WyomingGoogle Scholar
  181. Wass, R. E., Connolly, J. R. &Macintyre, R. J. (1970): Bryozoan carbonate sand continuous along southern Australia.—Marine Geology,9, 63–73, AmsterdamGoogle Scholar
  182. Wassmann,P.,Peinert,R. &Smetacek,V. (1991): Patterns of reproduction and sedimentation in the Norwegian coastal zone, the Barents Sea and Norwegian Sea.—In:Wassmann,P.,Heiskanan,A. S. &Lindahl,O. (eds.): Sediment trap studies in the nordic countries, 2.—137-156, Nurnijärvi (Nurmiprint)Google Scholar
  183. Wattenberg, H. (1933): Über die Tritrationsalkalinität und den Kalzium-Karbonatgehalt des Meerwassers.—Wiss. Ergebn. Deutsch. Atlantisch. Exped. Meteor, 1925–19278, 122–231, HamburgGoogle Scholar
  184. Wefer,G.,Balzer,W.,von,Bodungen,B. &Suess,E. (1987): Biogenic carbonates in temperate and subtropical environments: Production and accumulation, saturation state and stable isotope composition.—In:Rumohr,J.,Walger,E. &Zeitschel,B. (eds.): Seawater-Sediment Interactions in Coastal Waters.—263-302, Berlin (Springer)Google Scholar
  185. Wehrmann, A. (1994): Karbonatproduktion in der Baie de Morlaix, Bretagne, Frankreich (Arbeitstitel).-Ph.D. Thesis, University of MarburgGoogle Scholar
  186. Wilson, J. B. (1979a): The distribution of the coralLophelia pertusa (L.) [L. prolifera (Pallas)] in the northeast Atlantic.—J. Mar. Biol. Ass., U. K.,59, 149–164, PlymouthGoogle Scholar
  187. — (1979b): “Patch” development of the deep-water coralLophelia pertusa (L.) on Rockall Bank.—J. Mar. Biol. Ass., U.K.,59, 165–177, PlymouthGoogle Scholar
  188. — (1979c): Biogenic carbonate sediments on the Scottish continental shelf and on Rockall Bank.—Marine Geology,33, M85-M93, AmsterdamGoogle Scholar
  189. — (1988): A model for temporal changes in the faunal composition of shell gravels during a transgression on the continental shelf around the British Isles.—Sedimentary Geology,60, 95–105, AmsterdamGoogle Scholar
  190. Wood, R. (1993): Nutrients, predation and the history of reef-building.—Palaios,8, 526–543, TulsaGoogle Scholar
  191. Woodborne, M. W., Rogers, J. &Jarman, N. (1989): The geological significance of kelp-rafted rock along the west coast of South Africa.—Geo-Marine Letters,9, 109–118, StroundsburgGoogle Scholar
  192. Young, H. R. &Nelson, C. S. (1988): Endolithic biodegradation of cool-water skeletal carbonates on Scott shelf, northwestern Vancouver Island, Canada.—Sedimentary Geology,60, 251–267; AmsterdamGoogle Scholar
  193. Zankl, H. (1971): Upper Triassic carbonate facies in the northern Limestone Alps.—In: Sedimentology of parts of central Europe, 8th Sedimentological Congress, Heidelberg, Guidebook: 147–185, HeidelbergGoogle Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1995

Authors and Affiliations

  • Rüdiger Henrich
    • 1
  • André Freiwald
    • 1
  • Christian Betzler
    • 2
  • Beate Bader
    • 5
  • Priska Schäfer
    • 5
  • Christian Samtleben
    • 5
  • Thomas C. Brachert
    • 3
  • Achim Wehrmann
    • 4
  • Heinrich Zankl
    • 4
  • Dietrich H. H. Kühlmann
    • 6
  1. 1.Fachbereich GeowissenschaftenUniversität BremenBremen
  2. 2.Geologisch-Paläontologisches InstitutFrankfurt a.M.
  3. 3.Institut für GeowissenschaftenUniversität MainzMainz
  4. 4.Institut für Geologie und PaläontologieUniversität MarburgMarburg
  5. 5.Geologisch-Paläontologisches InstitutUniversität KielKiel
  6. 6.Schmagerow/Vorpommem

Personalised recommendations