Advertisement

Facies

, Volume 8, Issue 1, pp 113–189 | Cite as

The paleoecology of a “middle limestone member” (Leavenworth) of an upper Carboniferous (Stephanian) cyclothem midcontinent, U.S.A.

  • Donald Francis Toomey
Article

Summary

This paper is devoted to the documentation of the lithological and paleontological parameters relative to deposition of the very thin (usually less than. 1 m thickness) Late Carboniferous limestone unit, the Leavenworth Limestone, extensively exposed in the American midcontinent.

The Leavenworth Limestone has long been thought of as a classic example of pronounced lateral sediment homogeneity, and this study corroborates this claim. The Leavenworth outcrop belt is exposed from northern Oklahoma, across eastern Kansas, northwestern Missouri, and into southeastern Nebraska. No outcrops of Leavenworth Limestone are present in southwestern Iowa, but the results from two shallow core bores from this area have been incorporated in this study and complete a rock traverse of approximately 500 kms. Field relationships indicate that the Leavenworth Limestone exposures were essentially deposited parallel to what must have been the eastern shoreline of a Late Carboniferous epicontinental sea. Accordingly, it is shown that the Leavenworth was laid down within intermediate water depths on a slowly subsiding carbonate platform. The facies distribution indicates that the majority of Leavenworth locations (25) can be designated as a skeletal wackestone facies, with only four other locations, all restricted to the southern end of the outcrop belt, assigned to an oncolithic facies. This facies distribution pattern reflects increasing southward proximity to a paleo-highland source area. Still farther southward, beyond the basin margin, the Leavenworth Limestone, and all other thin Late Carboniferous limestones, lens-out and merge into the clastic wedge of the Vamoosa Formation of central and northern Oklahoma. Although the Leavenworth Limestone is unrecognizable per se within this clastic wedge, it does extend farther southward than any other Late Carboniferous unit.

The Leavenworth Limestone contains remains of all major Late Paleozoic biotic groups, although none of the represented groups can be considered as occurring in great abundance. The foraminifers (agglutinated, silicified, smaller calcareous, and fusulinids) are perhaps the best represented faunal groups and show extensive lateral distribution patterns thought to reflect the overall Leavenworth lateral homogeneity. The algal assemblage is sparse, although it is characterized by consistent fragments of dasyclads and distinct types of algally coated-grains. Miscellaneous microfossils are represented by sponge spicules, holothurian sclerites, scolecodonts, “fish” remains, and conodonts, all of which occur in rather limited abundances and within spotty distribution patterns. Trace fossils occur mainly on the upper and lower bedding plane surfaces of the Leavenworth Limestone, and these consist ofChondrites, Asteriacites, and plowing trails attributed to gastropods. Throughout its thickness the Leavenworth Limestone shows abundant evidence of extensive organism burrowing and homogenization of the sediment. Many burrows are filled with distinctive fecal pellets associated with dispersed scolecodont remains. This association suggests an abundant original Leavenworth infauna composed primarily of marine worms. The megafauna retrieved from the Leavenworth is sparse and is dominated by a few groups of brachiopods and gastropods. It is thought that the delimiting factor responsible for the rather poor megafossil exploitation can be attributed to the dominantly muddy substrate, which most organisms find as a stress environment.

The Leavenworth Limestone has always been thought of as the “middle limestone” member of MOORE's megacyclothem and as such was thought to represent deposition in waters that were “just awash”. Recent work by HECKEL, and his re-interpretation of cyclothem deposition in the midcontinental United States, suggests that the middle limestone member (Leavenworth) is the transgressive carbonate in a cyclothem overlain by fissile black shale now regarded as an offshore core shale that was deposited within the deepest waters of the cyclothem. This present interpretation of cyclothem deposition in the Late Carboniferous rocks of the midcontinantal United States seems best to explain the current observations.

Key Words

Facies Cyclothem Paleoecology Paleontology Algae Invertebrates Paleogeography Midcontinent U.S.A. Upper Carboniferous (Virgilianstephanian) 

Palökologie einer „Mittleren Kalk-Einheit” eines oberkarbonischen Zyklothems (Leavenworth-Kalk, Stephan), Mittlerer Westen, U.S.A.

Zusammenfassung

Die Arbeit behandelt die lithologischen und paläontologischen Merkmale sowie die Ablagerungsbedingungen einer sehr geringmächtigen (im allgemeinen weniger als 1 m) spätoberkarbonischen Kalk-Einheit (Leavenworth-Kalk des Oread-Megazyklothems) im Mittleren Westen der U.S.A. Der Leavenworth-Kalk gilt als klassisches Beispiel für eine ausgeprägte laterale Homogenität im Sedimenttypus; diese Ansicht wird durch die vorliegende Untersuchung bestätigt und präzisiert.

Aufschlüsse von Leavenworth-Kalk finden sich im nördlichen Oklahoma, östlichen Kansas, nordwestlichen Missouri und südöstlichen Nebraska (Abb. 2); im südwestlichen Iowa ist der Leavenworth-Kalk nur in Bohrungen nachgewiesen. Die Verbreitung des Leavenworth-Kalkes kann demnach auf einer Strecke von etwa 500 km verfolgt werden. Feldbeobachtungen weisen darauf hin, daß die Aufschlüsse mit Leavenworth-Kalk im wesentlichen parallel zu der östlichen Küstenlinie des spätoberkarbonischen Epikontinentalmeeres angeordnet sind. Diese Anordnung im Streichen ist mitverantwortlich für die relativ einheitliche Ausbildung des Sedimentes, das auf einer langsam absinkenden Karbonatplattform abgelagert wurde. In den meisten Aufschlüssen sind die Kalke in die “Skeletal Wackestone Facies” einzuordnen, lediglich vier im nördlichen Oklahoma gelegene Vorkommen von Leavenworth-Kalk gehören zur “Oncolithic Facies”. Diese Faziesverteilung spiegelt eine, in Richtung Süden zunehmende Nähe eines Hochgebietes wider. Noch weiter im Süden, jenseits des Beckenrandes, dünnen der Leavenworth-Kalk und alle anderen, geringmächtigen spätoberkarbonischen Kalke aus und verbinden sich mit den klastischen Folgen der Vamoosa Formation von Zentral-und Nord-Oklahoma. Obwohl der Leavenworth-Kalk in diesen klastischen Folgen an sich nicht erkennbar ist, reicht er offenbar weiter nach Süden als alle anderen oberkarbonischen Kalke.

Im Leavenworth-Kalk treten alle aus dem Jungpaläozoikum bekannten Fossilgroßgruppen auf, jedoch ist keine der Gruppen sehr häufig. Am wichtigsten erscheinen die Foraminiferen (agglutinierte Formen, verkieselte Formen, kalkschalige Kleinforaminiferen und Fusuliniden), deren laterale Verteilungsmuster ebenfalls die laterale Homogenität des Leavenworth-Kalkes widerspiegeln. Die relativ arme Algen-Flora ist durch charakteristische Dasycladaceen und durch Rhodolithen gekennziechnet. Andere Mikrofossilien sind durch Schwamm-Nadeln, Holothurien-Skleriten, Scolecodonten, Fischreste und durch Conodonten repräsentiert—finden sich jedoch nur selten und in unregelmäßiger Verteilung. Spurenfossilien kommen auf den Bankober- und Unterflächen der Leavenworth-Kalke vor, insbesondereChondrites, Asteriacites und Kriechspuren, die wahrscheinlich auf Gastropoden zurückzuführen sind. Viele Wühlgänge sind mit Kotpillen und mit Scolecodonten-Resten gefüllt, was auf eine reiche Infauna, vorwiegend aus marinen Würmern, hinweist. Die relativ arme Megafauna besteht aus Brachiopoden und Gastropoden. Möglicherweise kann die Seltenheit dieser Gruppen auf das ungünstige Schlammsubstrat zurückgeführt werden.

Der Leavenworth-Kalk wird von den meisten Autoren als “mittlere Kalk-Einheit” des von MOORE (1936) postulierten “Megacyclothems” betrachtet und derart als ABlagerung in gerade noch vom Wasser Überspülten Bereichen. Nach der Neuinterpretation der zyklischen Sedimente im amerikanischen Mittleren Westen durch HECKEL (1977, 1979) entspricht die “Mittlere Kalk-Einheit” und damit auch der Leavenworth-Kalk dem während einer Transgressionsphase gebildeten Karbonat innerhalb eines Zyklothems; die den Kalk überlagernden feinbläteringen schwarzen schiefer sind als küstenferne Ablagerungen anzusehen, welche das bathymetrisch tiefste Sediment des Zyklothems darstellen. Diese Deutung der Ablagerungsgeschichte wird durch die Detailuntersuchung des Leavenworth-Kalkes unterstützt.

Schlüsselwörter

Fazies Zyklothem Paläoökologie Paläontologie Algen Invertebraten Paläogeographie Mittlerer Westen U.S.A. Oberkarbon (Virgilstephan) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BAESEMANN, J.F. (1973): Missourian (Upper Pennsylvanian) conodonts of northeastern Kansas.— Paleontology47, 689–710, 3 pls., TulsaGoogle Scholar
  2. BEERBOWER, J.R. (1961) Origin of cyclothems of the Dunkard Group (Upper Pennsylvanian-Lower Permian) in Pennsylvania, West Virginia, and Ohio.—Bull. Geol. Soc. America72, 1029–1050, 1 fig., New York CityGoogle Scholar
  3. BITTER, von P.H. (1972): Environmental control of conodont distribution in the Shawnee Group (Upper Pennsylvanian) of eastern Kansas. Univ. Kansas Paleont. Contrib.59, 105 p., 16 pls., LawrenceGoogle Scholar
  4. BONAR, L. (1936): An unusual ascomycete in the shells of marine animals.—Univ. California Publ. in Botany19, 187–194, pl. 22, Los AngelesGoogle Scholar
  5. BOURGH, J. (1929): On rhythmic deposition in the Yoredale Series.—Proc. Univ. Durham Philo. Soc.8, 116–126, 3 figs., DurhamGoogle Scholar
  6. BRADEN, W.J. (1958): The Oread megacyclothem (Upper Pennsylvanian) in the Forest City Basin.—Unpubl. MS Thesis, 86 p., Univ. Nebraska, LincolnGoogle Scholar
  7. BRANSON, C.C. (1962): Pennsylvanian System of the Midcontinent. In: BRANSON, C.C. (ed.): Pennsylvanian System in the United States, a symposium, Amer. Assoc. Petrol. Geol., 431–460, 10 figs., TulsaGoogle Scholar
  8. CHENOWITH, P.A. (1959): Source of the Vamoosa quartzite pebbles.—Oklahoma Geol. Notes19, 229–232, 1 fig., NormanGoogle Scholar
  9. CLARK, F.R. (1922): Structure and oil and gas resources of the Osage Reservation, Oklahoma, T. 26N., TS. 9, 10, & 11 E.—U. S. Geol. Survey Bull.686, 91–118, pls. 16–17, figs. 20–22, Washington, D.C.Google Scholar
  10. COLBATH, G.K. & LARSON, S.K. (1980): On the chemical composition of fossil polychaete jaws.—J. Paleontology54, 485–488. 2 figs., TulsaGoogle Scholar
  11. CONDRA, G.E. (1927): The stratigraphy of the Pennsylvanian System in Nebraska.—Bull. Nebraska Geol. Survey1, 291 p., 7 pls., 38 figs., LincolnGoogle Scholar
  12. CONDRA, G.E. & UPP, J.E. (1933): The Middle River traverse of Iowa.—Paper Nebraska Geol., Survey4, 5 figs., LincolnGoogle Scholar
  13. COOLEY, D.R. (1952): Facies change in the Oread Limestone in southern Kansas and northern Oklahoma.—Unpubl. MS Thesis, 58 p., Univ. Kansas, LawrenceGoogle Scholar
  14. CRONEIS, C. & SCOTT, H.W. (1933): Scolecodonts.—Abstract Geol. Soc. America Bull.44, 207, New York CityGoogle Scholar
  15. DUNBAR, C.O., & CONDRA, G.E. (1932): Brachiopoda of the Pennsylvanian System in Nebraska.— Bull. Nebraska Geol. Survey5, 377 p., 44 pls., 25 figs., LincolnGoogle Scholar
  16. DUNHAM, R.J. (1962): Classification of carbonate rocks according to depositional texture. In: HAM, W.E. (ed.): Classification of carbonate rocks, a symposium.—Mem. Amer. Assoc. Petrol. Geol.1, 108–121, 7 pls., TulsaGoogle Scholar
  17. ELIAS, M.S. (1937): Depth of deposition of the Big Blue (Late Paleozoic) sediments in Kansas.—Bull. Geol. Soc. America48, 403–432, 1 pl., 4 figs., New York CityGoogle Scholar
  18. ELLISON, S. (1941): Revision of the Pennsylvanian conodonts.—Jour. Paleontology15, 107–143, pls. 20–23, TulsaGoogle Scholar
  19. EVANS, J.K. (1966): Depositional history of a Pennsylvanian black shale (Heebner) in Kansas and adjacent states.—Unpubl. Ph. D Dissertation, 157 p., Rice University, HoustonGoogle Scholar
  20. FLÜGEL, E. (1966): Algen aus dem Perm der Karnischen Alpen.—Carinthia II,25, 76 p., 11 pls., KlagenfurtGoogle Scholar
  21. — (1972): Mikrofazielle Untersuchungen in der Alpinen Trias—Methoden und Probleme.— Mitt. Ges. Geol. Bergbaustud.21, 9–64, 9 pls., InnsbruckGoogle Scholar
  22. — (1982): Microfacies analysis of limestones.—633 p., 53 pls., 78 figs., Berlin-Heidelberg-New York (Springer).Google Scholar
  23. FLÜGEL, E., & FLÜGEL-KAHLER, E. (1980): Algen aus den Kalken der Trogkofel-Schichten der Karnischen Alpen. In: Die Trogkofel-Stufe im Unterperm der Karnischen Alpen.—Carinthia II, Sonderheft36, 113–182, 14 pls., KlagenfurtGoogle Scholar
  24. FRIZZELL, D.L., & EXLINE, H. (1955): Monograph of fossil holothurian sclerites.—Bull. Univ. Missouri School Mines89, 204 p., 11 pls., ColumbiaGoogle Scholar
  25. GUNNELL, F.H. (1933): Conodonts and fish remains from the Cherokee, Kansas City, and Waubaunsee Groups of Missouri and Kansas.—J. Paleontology7, 261–297, pls. 31–33, TulsaGoogle Scholar
  26. GUNTER, G. (1947a): Paleoecological import of certain relationships of marine animals to salinity.—J. Paleontology21, 77–79, TulsaGoogle Scholar
  27. — (1974b): Extended remarks on relationships of marine animals to salinity.—J. Paleontology21, 498–500, TulsaGoogle Scholar
  28. HAKES, W.G. (1976): Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, northeast Kansas.—Art. Univ. Kansas Paleon. Inst.63, 46 p., 13 pls., 11 figs., LawrenceGoogle Scholar
  29. — (1977): Trace fossils in Late Pennsylvanian cyclothems, Kansas. In: CRIMES, T.P. & HARPER, J.C. (eds.): Trace Fossils2, 209–226, 2 pls., 2 figs., Liverpool (Seel House Press)Google Scholar
  30. HARBAUGH, J.W. & DAVIE, W. (1964): Upper Pennsylvanian calcareous rocks cored in two wells in Rawlins and Stafford Counties, Kansas.—Bull. Kansas Geol. Survey170, 18 p., 1 pl., LawrenceGoogle Scholar
  31. HARRIS, R.W. & HOLLINGSWORTH, R.V. (1933): New Pennsylvanian conodonts from Oklahoma.— Amer. J. Sci.25, 193–204, 1 pl., New HavenCrossRefGoogle Scholar
  32. HEALD, K.C. (1922): Structure and oil and gas resources of the Osage Reservation, Oklahoma, T. 25 N., R. 9 E.—Bull. U. S. Geol. Survey686, 27–41, figs. 6–10, Washington, D. C.Google Scholar
  33. HECKEL, P.H. (1977): Origin of phosphatic black shale facies in Pennsylvanian cyclothems of midcontinent North America.—Bull. Amer. Assoc. Petrol. Geol.61, 1045–1068, 7 figs., TulsaGoogle Scholar
  34. — (1979): Field guide to Pennsylvanian cyclic deposits in Kansas and Nebraska.—Kansas Geol. Survey Guidebook4, 8–60, 40 figs., LawrenceGoogle Scholar
  35. HECKEL, P.H. & BAESEMANN, J.F. (1975): Environmental interpretation of conodont distribution in Upper Pennsylvanian (Missourian) megacyclothems in eastern Kansas.—Bull. Amer. Assoc. Petrol. Geol.,59, 486–509, 6 figs., TulsaGoogle Scholar
  36. HECKEL, P.H. & COCKE, J.M. (1969): Phylloid algal-mound complexes in outcropping Upper Pennsylvanian rocks of midcontinent.—Bull. Amer. Assoc. Petrol. Geol.53, 1058–1074, 12 figs., TulsaGoogle Scholar
  37. HENBEST, L.G. (1963): Biology, mineralogy, and diagenesis of some typical Late Paleozoic sedentary Foraminifera and algal-foraminiferal colonies.—Spec. Publ. Cushman Found. Foram. Res.6, 44 p., 7 pls., 2 figs., BridgewaterGoogle Scholar
  38. HERSHEY, H.G., BROWN, C.N., VAN ECK, O., & NORTHUP, R.C. (1960): Highway construction materials from the consolidated rocks of southwestern Iowa.—Bull. Iowa Highway Res. Board15, 151 p., 28 figs., Iowa CityGoogle Scholar
  39. HICKS, R.V. (1962): Paleocurrent directions in the Vamoosa Formation (Pennsylvanian) of Oklahoma.—Unpubl. MS Thesis, 28 p., Univ. Kansas, LawrenceGoogle Scholar
  40. HOARE, R.D. (1961): Desmoinesian Brachiopoda and Mollusca from southwest Missouri.—Univ. Missouri Studies36, 214 p., 23 pls., 1 fig., ColumbiaGoogle Scholar
  41. HUDSON, R.G. (1926): On the rhythmic succession of the Yoredale Series in Wensleydale.— Proc. Yorkshire Geol. Soc.20, 125–135, 3 figs., YorkCrossRefGoogle Scholar
  42. HUNT, O.D. (1925): The food of the bottom fauna of the Plymouth fishing grounds.—J. Marine Biol. Assoc. U.K.3, 560–599, 4 figs., LondonCrossRefGoogle Scholar
  43. JANSONIUS, J. & CRAIG, J.H. (1971): Scolecodonts: I. Descriptive terminology and revision of systematic nomenclature; II. Lectotypes, new names for homonyms, index of species.— Bull. Canadian Petrol. Geol.19, 251–302, 3 pls., CalgaryGoogle Scholar
  44. JENNINGS, T.V. (1959): Faunal zonation of the Minnelusa Formation, Black Hills, South Dakota.— J. Paleontology33, 986–1000, pl. 124, TulsaGoogle Scholar
  45. JOHNSON, J.H. (1946): Lime-secreting algae from the Pennsylvanian and Permian of Kansas.— Bull. Geol. Soc. America57, 1087–1120, 10 pls., New York CityGoogle Scholar
  46. — (1956):Archaeolithophyllum, a new genus of Paleozoic coralline algae.—J. Paleontology30, 53–55 pl. 14, TulsaGoogle Scholar
  47. JOHNSON, J.H. (1960): Paleozoic Solenoporaceae and related red algae.—Quart. Colorado School Mines55, 77 p., 23 pls., BoulderGoogle Scholar
  48. KIELAN-JAWOROWSKA, Z. (1968): Scolecodonts versus jaw apparatuses.—Lethaia1 39–49, 5 figs., OsloGoogle Scholar
  49. KING, P.B. (1959): The evolution of North America.—190 p., Princeton (Princeton Univ. Press)Google Scholar
  50. KLAPPER, G. & PHILIP, G.M. (1971): Devonian conodont apparatuses and their vicarious skeletal elements.—Lethaia4, 429–452, 14 figs., OsloGoogle Scholar
  51. KONISHI, K. & WRAY, J.L. (1961)Eugonophyllum, a new Pennsylvanian and Permian algal genus.—J. Paleontology35, 659–666 pl. 75, TulsaGoogle Scholar
  52. KRUMME, G.W. (1981): Stratigraphic significance of limestones of the Marmaton Group (Pennsylvanian, Desmoinesian) in eastern Oklahoma.—Bull. Oklahoma Geol. Survey131, 67 p., 40 figs., NormanGoogle Scholar
  53. LEE, W., NICKELL, C.O., WILLIAMS, J.S. & HENBEST, L.G. (1938): Stratigraphic and paleontologic studies of the Pennsylvanian and Permian rocks in northcentral Texas.-Publ. Univ. Texas3801, 252 p., 11 pls., 9 figs., AustinGoogle Scholar
  54. LUKERT, L.H. (1949): Subsurface cross-sections from Marion County, Kansas, to Osage County, Oklahoma.—Bull. Amer. Assoc. Petrol. Geol.33, 131–152, 5 figs., TulsaGoogle Scholar
  55. MAMET, B.L. & d'ALBISSIN, M. (1967): Influence of pressure and temperature on limestones. In: CHILINGAR, G.V., BISSELL, H.J. & FAIRBRIDGE, R.W. (eds.): Carbonate rocks, physical and chemical aspects, 209–223, 5 figs., New York (Elsevier)Google Scholar
  56. MARSZALEK, D.S. (1975): Calcisphere ultrastructure and skeletal aragonite from the algaAcetabularia antillana.—J. Sed. Petrology45, 266–271, 3 figs., TulsaGoogle Scholar
  57. MASLOV, V.P. (1956): Fossil calcareous algae of the USSR.—Akad. Nauk SSSR, Inst. Geol. Nauk, Trudy160, 301 p., 86 pls., MoscowGoogle Scholar
  58. MASSA, D. & VACHARD, D. (1979): Le Carbonifère de Libye occidentale: biostratigraphie et micropaléontologie, Position dans le domaine Téthysien d'Afrique du Nord.-Rev. Inst. Francais Pétrole34, 65 p., 9 pls., 19 figs., ParisGoogle Scholar
  59. MISER, H.D. (1934): Carboniferous rocks of the Ouachita Mountains.—Bull. Amer. Assoc. Petrol. Geol.18, 971–1009, 5 figs., TulsaGoogle Scholar
  60. MOORE, R.C. (1936): Divisions of the Pennsylvanian System in Kansas.-Bull. Kansas Geol. Survey22, 256 p., 12 figs., LawrenceGoogle Scholar
  61. MOORE, R.C. (1950): Late Paleozoic cyclic sedimentation in central United States. In: Rhythm in sedimentation, 18th. Int. Geol. Congress, Great Britain 1948,4, C, 5–16, 6 figs. LondonGoogle Scholar
  62. MOORE, R.C. (1966): Paleoecological aspects of Kansas Pennsylvanian and Permian cyclothems. In: MERRIAM, D.F. (ed.), Symposium on cyclic sedimentation, Bull. Kansas Geol. Survey169, 287–380, 52 figs., LawrenceGoogle Scholar
  63. MOORE, R.C. & MERRIAM, D.F. (1959): Twenty-third field conference guidebook.—Kansas Geol. Soc., 52 p., LawrenceGoogle Scholar
  64. MUDGE, M.R. & YOCHELSON, E.L. (1962): Stratigraphy and paleontology of the uppermost Pennsylvanian and lowermost Permian rocks in Kansas.—Prof. Paper U.S. Geol. Survey323, 213 p., 17 pls., 36 figs., Washington, D.C.Google Scholar
  65. PARRISH, J.T. (1982): Upwelling and petroleum source beds, with reference to the Paleozoic.—Bull. Amer. Assoc. Petrol. Geol.66, 750–774, 12 figs., TulsaGoogle Scholar
  66. PETRYK, A.A., MAMET, B.L. & MACQUEEN, R.W. (1970): Preliminary foraminiferal zonation, Rundle Group and uppermost Banff Formation (Lower Carboniferous), southwestern Alberta.— Bull. Canadian Petrol. Geol.18, 84–103, 6 figs., CalgaryGoogle Scholar
  67. POWERS, S. (1928): Age of the folding of the Oklahoma Mountains.—Bull. Geol. Soc. America39, 1031–1071, 11 figs., New York CityGoogle Scholar
  68. PURDY, E.G. (1964): Sediments as substrates. In: IMBRIE, J. & NEWELL, N.D. (eds.), Approaches to paleoecology, 238–270, 4 figs., New York City (John Wiley & Sons)Google Scholar
  69. RASCOE, B. (1962): Regional stratigraphic analysis of Pennsylvanian and Permian rocks in western midcontinent, Colorado, Kansas, Oklahoma, and Texas.—Bull. Amer. Assoc. Petrol. Geol.46, 1345–1370, 21 figs., TulsaGoogle Scholar
  70. REGER, D.B. (1931): Pennsylvanian cycles in West Virginia.—Bull. Illinois Geol. Survey60, 217–239, figs. 50–52Google Scholar
  71. SABINS, F.E. & ROSS, C.A. (1963): Late Pennsylvanian-Early Permian fusulinids from southeast Arizona.—J. Paleontology37, 323–365, pls. 35–40, 4 figs., TulsaGoogle Scholar
  72. SANDERS, H.L. (1956): Oceanography of Long Island Sound, 1952–1954. X. The biology of marine bottom communities.—Bull. Bingham Oceanogr. Coll.15, 345–414, 11 figs., New York CityGoogle Scholar
  73. — (1958): Benthic studies in Buzzards Bay. I. Animal-sediment relationships.—Limnology Oceanography3, 245–258, New York CityCrossRefGoogle Scholar
  74. SCOTT, G.H. (1963): Uniformitarianism, the uniformity of nature, and paleoecology.—New Zealand J. Geol. Geophys.6, 510–527, WellingtonGoogle Scholar
  75. SEDDON, G. & SWEET, W.C. (1971): An ecologic model for conodonts.—J. Paleontology45, 869–880, 3 figs., TulsaGoogle Scholar
  76. STAUFFER, C.R. & PLUMMER, H.J. (1932): Texas Pennsylvanian conodonts and their stratigraphic relations.—Bull. Univ. Texas3201, 13–50, 4 pls., AustinGoogle Scholar
  77. STOUT, W. (1931): Pennsylvanian cycles in Ohio.—Bull. Illinois Geol. Survey60, 195–216, figs. 47–49, UrbanaGoogle Scholar
  78. STURGEON, M.T. & HOARE, R.D. (1968): Pennsylvanian brachiopods of Ohio.—Bull. Geol. Survey Ohio63, 95 p., 22 pls., 14 figs., ColumbusGoogle Scholar
  79. TANNER, W.F. (1956a): Geology of northeastern Osage County, Oklahoma.—Circ Oklahoma Geol. Survey40, 76 p., 4 pls., 17 figs., NormanGoogle Scholar
  80. TANNER, W.F. (1965b): Geology of Seminole County, Oklahoma.—Bull. Oklahoma Geol. Survey74, 176 p., 9 pls., 20 figs., NormanGoogle Scholar
  81. — (1959): Permo-Pennsylvanian paleogeography of part of Oklahoma.—J. Sed. Petrology29, 326–335, 5 figs., TulsaGoogle Scholar
  82. THOMPSON, M.L. (1942): New genera of Pennsylvanian fusulinids.—Amer. Jour. Sci.240, 403–420, 3 pls., New HavenCrossRefGoogle Scholar
  83. TOMLINSON, C.W. & MCBEE, W. (1962): Pennsylvanian sediments and orogenies of Ardmore District, Oklahoma. In: BRANSON, C.C. (ed.), Pennsylvanian System in the United States, a symposium.—Amer. Assoc. Petrol. Geol., 461–500, 11 figs., TulsaGoogle Scholar
  84. TOOMEY, D.F. (1975): Rhodoliths from the Upper Paleozoic of Kansas and the Recent-a comparison.—N. Jb. Geol. Paläont. Mh.,1975/4, 242–255, 5 figs., StuttgartGoogle Scholar
  85. TROELL, A.R. (1969): Depositional facies of Toronto Limestone Member (Oread Limestone, Pennsylvanian), subsurface marker unit in Kansas.—Bull. Geol. Survey Kansas197, 29 p., 13 figs., LawrenceGoogle Scholar
  86. TWENHOFEL, W.H. (1919): Precambrian and Carboniferous algal deposits.—Amer. Jour. Sci.48, 339–352, 5 figs., New HavenCrossRefGoogle Scholar
  87. VAN, WATERSCHOOT VAN DER GRACHT, W.A.J.M. (1931): Permo-Carboniferous orogeny in southcentral United States.—Bull. Amer. Assoc. Petrol. Geol.15, 991–1057, 1 fig., TulsaGoogle Scholar
  88. WANLESS, H.R. & SHEPARD, F.P. (1936): Sea level and climatic changes related to Late Paleozoic cycles.—Bull. Geol. Soc. America47, 1177–1206, 3 figs., New York CityGoogle Scholar
  89. WEAVER, C.E. (1958): Origin and significance of clay minerals in sedimentary rocks.— Bull. Amer. Assoc. Petrol. Geol.42, 254–271, 8 figs., TulsaGoogle Scholar
  90. WELLER, J.M. (1930): Cyclical sedimentation of the Pennsylvanian Period and tis significance. —Bull. J. Geol.38, 97–135, 6 figs., ChicagoGoogle Scholar
  91. — (1931): The concept of cyclical sedimentation during the Pennsylvanian Period.—Bull. Illinois Geol. Survey60, 163–177, 3 figs., UrbanaGoogle Scholar
  92. — (1956): Argument for diastrophic control of Late Paleozoic cyclothems.—Bull. Amer. Assoc. Petrol. Geol.40, 17–50, 1 fig., TulsaGoogle Scholar
  93. — (1957): Paleoecology of the Pennsylvanian Period in Illinois and adjacent states.—Mem. Geol. Soc. America67, 325–364, 2 figs., new York CityGoogle Scholar
  94. WELLS, A.J. (1960): Cyclic sedimentation: a review.—Geol. May.97, 389–403, LondonGoogle Scholar
  95. WELP, T.L., THOMAS, L.A. & DIXON, H.R. (1957): A correlation and structural interpretation of the Missourian and Virgilian rocks exposed along the Middle River traverse of Iowa.— Proc. Iowa Acad. Sci.64, 416–428, 3 figs., Iowa CityGoogle Scholar
  96. WHEELER, H.E. & MURRAY, H.H. (1957): Base-level control patterns in cyclothemic sedimentation. —Bull. Amer. Assoc. Petrol. Geol.41, 1985–2011, 7 figs., TulsaGoogle Scholar
  97. WILSON, J.L. (1975): Carbonate facies in geologic history.—471 p., 30 pls., 183 figs., Berlin-Heidelberg-New York City (Springer)Google Scholar
  98. WINCHESTER, D.E. (1922): Structure and oil and gas resources of the Osage Reservation, Oklahoma, T. 27 N., R. 9 E.—Bull. U.S. Geol. Survey686, 11–15, figs. 3–4, Washington, D.C.Google Scholar
  99. WOOD, A. (1941): “Algal dust” and the fine-grained varieties of Carboniferous limestone.— Geol. Mag.78, 192–200, pl. 2, LondonCrossRefGoogle Scholar
  100. WRAY, J.L. (1964):Archaeolithophyllum, an abundant calcareous alga in limestones of the Lansing Group (Pennsylvanian), southeastern Kansas.—Bull. Kansas Geol. Survey170, 3–13, 2 pls., 4 figs., LawrenceGoogle Scholar
  101. WRAY, J.L. (1977): Calcareous algae.—Developments in Paleontology and Stratigraphy4, 185 p, 170 figs., Amsterdam-Oxford-New York City (Elsevier)Google Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1983

Authors and Affiliations

  • Donald Francis Toomey
    • 1
  1. 1.Cities Service Company (CITCO)MidlandUSA

Personalised recommendations